Klasifikasi Lagu Berdasarkan Genre pada Format WAV
Nurmiyati Tamatjita(1*), Agus Harjoko(2)
(1) 
(2) 
(*) Corresponding Author
Abstract
Abstrak
Dalam dunia yang berkembang pesat, media audio semakin komplek. Karena itulah diperlukan sebuah mekanisme penentuan jenis lagu (genre) yang tepat secara efektif dan efisien. Pencarian secara manual sudah tidak efektif dan efisien lagi karena banyaknya data yang tersimpan.
Zero Crossing Rate (ZCR), Average Energy (E) dan Silent Ratio (SR) adalah 3 Feature Extraction yang digunakan untuk klasifikasi pencarian 12 genre.
Tiga dimensi adalah bentuk visualisasi pengukuran tingkat kemiripan sebuah data berdasarkan hasil klasifikasi yang diinput oleh user.
Dalam penelitian ini pengujian klasifikasi menggunakan metode 3, 6, 9 dan 12 genre melalui jarak terdekat (Euclidean Distance). Hasil pengujian yaitu menunjukkan bahwa 3 genre yaitu Balada, Blues dan Classic menunjukkan = 96,67%, 6 genre yaitu Balada, Blues, Classic, Harmony, Hip Jop dan Jazz menunjukkan = 70% dan 9 genre yaitu Balada, Blues, Classic, Harmony, Hip Hop, Jazz, Keroncong, Latin dan Pop menunjukkan = 53,33% serta 12 genre = 33,33%
Kata Kunci— Zero Crossing Rate (ZCR), Average Energy (E), Silent Ratio (SR), Euclidean Distance
Abstract
Music genre is getting complex from time to time. As the size of digital media grows along with amount of data, manual search of digital audio files according to its genre is considered impractical and inefficient; therefore a classification mechanism is needed to improve searching.
Zero Crossing Rate (ZCR), Average Energy (E) and Silent Ratio (SR) are a few of features that can be extracted from digital audio files to classify its genre. This research conducted to classify digital audio (songs) into 12 genres: Ballad, Blues, Classic, Harmony, Hip Hop, Jazz, Keroncong, Latin, Pop, Electronic, Reggae and Rock using above mentioned features, extracted from WAV audio files. Classification is performed several times using selected 3, 6, 9 and 12 genres respectively.
The result shows that classification of 3 music genres (Ballad, Blues, Classic) has the highest accuracy (96.67%), followed by 6 genres (Ballad, Blues, Classic, Harmony, Hip Hop, Jazz) with 70%, and 9 genres (Ballad, Blues, Classic, Harmony, Hip Hop, Jazz, Keroncong, Latin, Pop) with 53.33% accuracy. Classification of all 12 music genres yields the lowest accuracy of 33.33%.
Keywords— Zero Crossing Rate (ZCR), Average Energy (E), Silent Ratio (SR), Euclidean Distance
Full Text:
PDFDOI: https://doi.org/10.22146/ijccs.6542
Article Metrics
Abstract views : 5519 | views : 4353Refbacks
- There are currently no refbacks.
Copyright (c) 2014 IJCCS - Indonesian Journal of Computing and Cybernetics Systems
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1