Determination of Temporal Association Rules Pattern Using Apriori Algorithm

https://doi.org/10.22146/ijccs.51747

Shona Chayy Bilqisth(1*), Khabib Mustofa(2)

(1) Master Program of Computer Science, FMIPA UGM, Yogyakarta
(2) Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta
(*) Corresponding Author

Abstract


A supermarket must have  good business plan in order to meet customer desires. One way that can be done to meet customer desires is to find out the pattern of shopping purchases resulting from processing sales transaction data. Data processing produces information related to the function of the association between items of goods temporarily. Association rules  functions in data mining.

Association rule is one of the data mining techniques used to find patterns in combination of transaction data. Apriori algorithm can be used to find association rules. Apriori algorithm is used to find frequent itemset candidates who meet the support count. Frequent itemset that meets the support count is then processed using the temporal association rules method. The function of temporal association rules is as a time limitation in displaying the results of frequent itemsets and association rules. This study aims to produce rules from transaction data, apriori algorithm is used to form temporal association rules. The final results of this research are strong rules, they are rules that always appear in 3 years at certain time intervals with limitation on support and confidence, so that the rules can be used for business plan layout recommendations in Maharani Supermarket Demak.

Keywords


sales; temporal association rules; apriori; data mining

Full Text:

PDF


References

[1] V.N. Latifah, M.T. Furqon, and N. Santoso, “Implementasi Algoritme Modified-Apriori Untuk Menentukan Pola Penjualan Sebagai Strategi Penempatan Barang Dan Promo,”

Journal of Information Technology and Computer Science Development, vol. 2, no. 10, 2018 [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2764/1051. [Accessed: 21-Nov-2019]

[2] R. Yanto and R. Khoiriah, “Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat,” CITEC (Creative Information Technology Journal), vol. 2, no. 2, 2015 [Online]. Available:https://pdfs.semanticscholar.org/9135/4235119ad862d3c69de94b0ca79924427ed0.pdf. [Accessed: 18-Nov-2019]

[3] A. Maulani, “Discovering Temporal Association Rules Using Apriori Algorithm (Case Study : Toko Batik Diyan Solo),” Tesis, Program Pasca Sarjana Ilmu Komputer, Universitas Gajah Mada, 2015.

[4] F.A. Santuni, “Penerapan Algoritma Apriori Untuk Penentuan Tingkat Pesanan,” Jurnal Mantik Penusa Journal In Information Systems, Vol. 2, No. 1, 2018 [Online]. Available: http://e-jurnal.pelitanusantara.ac.id/index.php /mantik/article/download/330/216. [Accessed: 18-Nov-2019]

[5] D.T Larose and C.D. Larose, “Discovering Knowledge In Data An Introduction to Data

Mining”, Ed.2, New Jersey, Canada, 2014.

[6] E. Prasetyo, Data Mining - Processing Data into Information Using Matlab, Ed.1, Andi Offset, Yogyakarta : Deepublish, 2014.

[7] D.P. Larasati, M. Nasrun, and U.A Ahmad., “Analysis and Implementation of FP Groth Algorithm in Smart Aplication to Determine Market Basket Analysis on Retail Business (CaseStudy:PT.X)”, Jurnal Telkom Bandung University, vol. 2, no. 1, 2015. [Online]. Available: https://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/2062/1949. [Accessed: 18-Nov-2019]

[8] A. Hidayat,“Budaya Konsumen Bulan Ramadan bagi Masyarakat Modern di Indonesia”, Jurnal Institut Agama Islam Negeri Purwokerto, vol. 14, no. 2, 2016. [Online].Available: http://ejournal.iainpurwokerto.ac.id/index.php/ibda/article/view/684

[Accessed: 18-Nov-2019]

[9] A.N.K. Movanita.,“Survei BI: Konsumen Ekspektasi Tekanan Harga Naik di

Akhir Tahun”, 2018. [Online]. Available:

https://ekonomi.kompas.com/read/2018/10/05/130107726/survei-bi-konsumen-ekspektasi-tekanan-harga-naik-di-akhir-tahun. [Accessed: 21-Nov-2019]

[10] A. Maulani, S. Hartati, and A. Musdholifah, “Pembentukan Temporal Association

Rules Menggunakan Algoritma Apriori (Studi Kasus:Toko Batik Diyan Solo)”, IJCCS

(Indonesian J. Comput. Cybern. Syst., vol.10, no. 1, 2016 [Online]. Available:

https://jurnal.ugm.ac.id/ijccs/article/view/11190/8430. [Accessed: 21-Nov-2019]



DOI: https://doi.org/10.22146/ijccs.51747

Article Metrics

Abstract views : 50296 | views : 2459

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2