Oversampling Method To Handling Imbalanced Datasets Problem In Binary Logistic Regression Algorithm
Windyaning Ustyannie(1*), Suprapto Suprapto(2)
(1) Prodi S2 Ilmu Komputer; FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer and Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] H. He and Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications, pp. 101-149, John Wiley & Thenns, New Jersey, 2014.
[2] J. A. Sáez, J. Luengo, J. Stefanowski and F. Herrera, SMOTE – IPF : Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering, pp. 184–203, https://doi.org/10.1016/j.ins.2014.08.051, 2015.
[3] I. H. Witten, F. Eibe, and M. A. Hall, Data Mining : Practical Machine Learning Tools and Techniques, 3rd Edition, Elsevier, United States, 2011.
[4] P. Harrington, Machine Learning in Action, Manning Publications Co, 2012.
[5] B. W. Yap, K. A. Rani, H. A. A. Rahman, S. Fong, Z. Khairudin, and N. N. Abdullah, An Application of Oversampling, Undersampling,Bagging and Boosting in Handling Imbalanced Datasets, (eds) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Lecture Notes in Electrical Engineering, vol. 285, Springer, Singapore, 2014.
[6] H. Zhang and M. Li, RWO-Sampling: A Random Walk Over-sampling Approach to Imbalanced Data Classification, Information Fusion, vol. 20(1), pp. 99–116, 2014.
[7] Y. Qian, Y. Liang, M. Li, G. Feng, and X. Shi, A Resampling Ensemble Algorithm for Classification of Imbalance Problems, Neurocomputing, vol. 143, pp. 57–67, http://doi.org/10.1016/j.neucom.2014.06.021, 2014.
[8] J. F. Díez-Pastor, J. J. Rodríguez, C. García-Othenrio, and L. I. Kuncheva, Random Balance: Ensembles of Variable Priors Classifiers for Imbalanced Data, Knowledge Based Systems, vol. 85, pp. 96–111, 2015.
[9] H. L. Dai, Class Imbalance Learning Via a Fuzzy Total Margin Based Support Vector Machine, Applied Thenft Computing, vol. 31, pp. 172–184, 2015.
[10] Q. Fan, Z. Wang, and D. Gao, One-sided Dynamic Undersampling No-Propagation Neural Networks for imbalance problem, Engineering Applications of ArtificialIntelligence, vol. 53, pp. 62–73, 2016.
DOI: https://doi.org/10.22146/ijccs.37415
Article Metrics
Abstract views : 8278 | views : 4339Refbacks
- There are currently no refbacks.
Copyright (c) 2020 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1