Klasifikasi Fase Retinopati Diabetes Menggunakan Backpropagation Neural Network

https://doi.org/10.22146/ijccs.3049

Rocky Yefrenes Dillak(1*), Agus Harjoko(2)

(1) 
(2) 
(*) Corresponding Author

Abstract


Abstrak

Retinopati diabetes (DR) merupakan salah satu komplikasi pada retina yang disebabkan oleh penyakit diabetes. Tingkat keparahan DR dibagi atas empat kelas yakni: normal, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), dan macular edema (ME). Penelitian ini bertujuan mengembangkan suatu metode yang dapat digunakan untuk melakukan klasifikasi terhadap fase DR. Data yang digunakan sebanyak 97 citra yang fitur – fiturnya  diekstrak menggunakan gray level cooccurence matrix (GLCM). Fitur ciri tersebut adalah maximum probability, correlation, contrast, energy, homogeneity, dan entropy. Fitur – fitur ini dilatih menggunakan jaringan syaraf tiruan backpropagation untuk dilakukan klasifikasi. Kinerja  yang dihasilkan dari pendekatan ini adalah sensitivity 100%, specificity 100% dan accuracy  97.73%

 

Kata kunci fase retinopati diabetes, GLCM, backpropagation neural network

 

 

Abstract

 Diabetic retinopathy (DR) is one of the complications on retina caused by diabetes. The aim of this studyis to develop a system that can be used for automatic mass screenings of diabetic retinopathy. Four classes are identified: normal retina, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and macular edema (ME). Ninenty-seven retinal fundus images in used in this study. Six different texture features such as maximum probability, correlation, contrast, energy, homogeneity, and entropy were extracted from the digital fundus images using gray level cooccurence matrix (GLCM). These features were fed into a backpropagation neural network classifier for automatic classification. The  proposed approach is able to classify with sensitivity 100%, specificity 100% and accuracy  97.73%

 

Keywords diabetic retinopathy stages, GLCM,  backpropagation neural network


Full Text:

PDF



DOI: https://doi.org/10.22146/ijccs.3049

Article Metrics

Abstract views : 1828 | views : 2282

Refbacks

  • There are currently no refbacks.




Copyright (c) 2013 IJCCS - Indonesian Journal of Computing and Cybernetics Systems

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2