Klasifikasi Fase Retinopati Diabetes Menggunakan Backpropagation Neural Network
Rocky Yefrenes Dillak(1*), Agus Harjoko(2)
(1) 
(2) 
(*) Corresponding Author
Abstract
Abstrak
Retinopati diabetes (DR) merupakan salah satu komplikasi pada retina yang disebabkan oleh penyakit diabetes. Tingkat keparahan DR dibagi atas empat kelas yakni: normal, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), dan macular edema (ME). Penelitian ini bertujuan mengembangkan suatu metode yang dapat digunakan untuk melakukan klasifikasi terhadap fase DR. Data yang digunakan sebanyak 97 citra yang fitur – fiturnya diekstrak menggunakan gray level cooccurence matrix (GLCM). Fitur ciri tersebut adalah maximum probability, correlation, contrast, energy, homogeneity, dan entropy. Fitur – fitur ini dilatih menggunakan jaringan syaraf tiruan backpropagation untuk dilakukan klasifikasi. Kinerja yang dihasilkan dari pendekatan ini adalah sensitivity 100%, specificity 100% dan accuracy 97.73%
Kata kunci— fase retinopati diabetes, GLCM, backpropagation neural network
Abstract
Diabetic retinopathy (DR) is one of the complications on retina caused by diabetes. The aim of this studyis to develop a system that can be used for automatic mass screenings of diabetic retinopathy. Four classes are identified: normal retina, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and macular edema (ME). Ninenty-seven retinal fundus images in used in this study. Six different texture features such as maximum probability, correlation, contrast, energy, homogeneity, and entropy were extracted from the digital fundus images using gray level cooccurence matrix (GLCM). These features were fed into a backpropagation neural network classifier for automatic classification. The proposed approach is able to classify with sensitivity 100%, specificity 100% and accuracy 97.73%
Keywords— diabetic retinopathy stages, GLCM, backpropagation neural network
Full Text:
PDFDOI: https://doi.org/10.22146/ijccs.3049
Article Metrics
Abstract views : 1840 | views : 2327Refbacks
- There are currently no refbacks.
Copyright (c) 2013 IJCCS - Indonesian Journal of Computing and Cybernetics Systems
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1