Adaptive Unified Differential Evolution for Clustering

https://doi.org/10.22146/ijccs.27871

Maulida Ayu Fitriani(1*), Aina Musdholifah(2), Sri Hartati(3)

(1) Magister of Computer Science FMIPA UGM, Yogyakarta
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(3) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author

Abstract


Various clustering methods to obtain optimal information continues to evolve one of its development is Evolutionary Algorithm (EA). Adaptive Unified Differential Evolution (AuDE), is the development of Differential Evolution (DE) which is one of the EA techniques. AuDE has self adaptive scale factor control parameters (F) and crossover-rate (Cr).. It also has a single mutation strategy that represents the most commonly used standard mutation strategies from previous studies.

The AuDE clustering method was tested using 4 datasets. Silhouette Index and CS Measure is a fitness function used as a measure of the quality of clustering results. The quality of the AuDE clustering results is then compared against the quality of clustering results using the DE method.

The results show that the AuDE mutation strategy can expand the cluster central search produced by ED so that better clustering quality can be obtained. The comparison of the quality of AuDE and DE using Silhoutte Index is 1:0.816, whereas the use of CS Measure shows a comparison of 0.565:1. The execution time required AuDE shows better but Number significant results, aimed at the comparison of Silhoutte Index usage of 0.99:1 , Whereas on the use of CS Measure obtained the comparison of 0.184:1.

Keywords


AuDE; DE; Clustering

Full Text:

PDF


References

[1]      L. Gu dan X. Lu, 2012, Semi-supervised Subtractive Clustering by Seeding, 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, pp. 738-741, http://ieeexplore.ieee.org/document/6234240/, diakses tanggal 19 Agustus 2017.

[2]      Kuo,  R.J.,  Syu,  Y.J.,  Chen,  Z.-Y.,  dan Tien,  F.C.,  2012,  Integration  of  Particle Swarm  Optimization  and  Genetic Algorithm  for  Dynamic Clustering, Information  Sciences, 195(0): 124-140,  :http://www.sciencedirect.com/science/article/pii/S0020025512000400, diakses tanggal 12 Agustus 2017.

[3]      Kuo, R. J., Suryani, E., dan Yasid, A., 2013, Automatic Clustering Combining Differential Evolution Algorithmand k-Means Algorithm, Proceedings of the Institute of Industrial Engineers Asian Conference Springer Science. Singapore, :https://link.springer.com/content/pdf/10.1007%2F978-981-4451-98-7_143.pdf, diakses tanggal 10 Agustus 2017.

[4]      K. Prince,  R. Storm, dan  J. Lampinen, 2005, Differential Evolution - A Practical Approach to Global Optimization  Natural Computing Science, Berlin : Springer.

[5]      Zou,  D.,  Liu,  H.,  Gao,  L.,  dan  Li,  S., 2011,  A  Novel  Modified  Differential Evolution  Algorithm  for  Constrained Optimization  Problems, Computers  & Mathematics  with  Applications (Elsevier), 61(6): 1608-1623, :http://www.sciencedirect.com/science/article/pii/S0898122111000460, diakses tanggal 10 Agustus 2017.

[6]      Qin, A. K., Huang, V. L., dan Suganthan, P. N., 2009, Differential Evolution  Algorithm with Strategy Adaptation for Global Numerical Optimization, IEEE Transactions on Evolutionary Computation, vol. 13, No. 2, pp. 398-417, http://ieeexplore.ieee.org/document/4632146/, diakses tanggal 10 Agustus 2017.

 [7]     Y. Wang, Z. Cai, dan Q. Zhang, 2011, Differential  Evolution with Composit Trial Vektor Generation Strategies and Control Parameters, IEEE Transactions on Evalutionary Computation, Vol. 15, No. 1, 1089-778X, :http://ieeexplore.ieee.org/document/5688232/.

 [8]     S. Das, A. Konar,  dan Chakraborty, 2005, Two Improved Differential Evolution Schemes for faster global Search, ACM SIGEVO proccedings Genetic Evolution Computation Conference, Washington DC, pp. 991-998, https://www.cs.york.ac.uk/rts/docs/GECCO_2005/Conference%20proceedings/docs/p991.pdf, diakses tanggal 10 Agustus 2017.

 [9]     J. Qiang, C. Mitchell, dan  A. Qiang, 2016, Tuning of an Adaptive Unified Differential Evolution Algorithm for Global Optimization. (K. Tang, Ed.), IEEE World Congress on Computational Intelligence, Vancouver, Canada: IEEE, :http://wcci2016.org/index.php- Report Number: LBNL-100436, diakses tanggal 6 Agustus 2017.

 [10]   A. Musdholifah dan S. Z. M., Hashim, 2010, Triangular Kernel Nearest Neighbor Based Clustering For Pattern Extraction in Spatio-Temporal Database, Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on pp. 67-73, :http://ieeexplore.ieee.org/document/5687288/, diakses tanggal 8 Agustus 2017.

[11]    E. Rendon, I. Abundez, A. Arizmendi,  dan E. M. Quiroz, 2011, Internal versus External Cluster Validation Indexes, International Journal of Computers and Communications, Vol. 5, Nomor 1, pp. 27-34, :http://www.universitypress.org.uk/journals/cc/20-463.pdf, diakses tanggal 10 Agustus 2017.

[12]    I. P. A. Pratama and A. Harjoko, “Penerapan Algoritma Invasive Weed Optimnization untuk Penentuan Titik Pusat Klaster pada K-Means,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 9, no. 1, p. 65, Jan. 2015 [Online]. Available: https://jurnal.ugm.ac.id/ijccs/article/view/6641. [Accessed: 04-Sep-2017].



DOI: https://doi.org/10.22146/ijccs.27871

Article Metrics

Abstract views : 925 | views : 963

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2