Implementasi Neural Fuzzy Inference System dan Algoritma Pelatihan Levenberg-Marquardt untuk Prediksi Curah Hujan
Nola Ritha(1*), Retantyo Wardoyo(2)
(1) Universitas Maritim Raja Ali Haji, Tanjung Pinang, Kepulauan Riau
(2) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Rainfall prediction can be used for various purposes and the accuracy in predicting is important in many ways. In this research, data of rainfall prediction use daily rainfall data from 2013-2014 years at rainfall station in Putussibau, West Kalimantan. Rainfall prediction using four parameters: mean temperature, average humidity, wind speed and mean sea level pressure.
This research to determine how performance Neural Fuzzy Inference System with Levenberg-Marquardt training algorithm for rainfall prediction. Fuzzy logic can be used to resolve the linguistic variables used in rule of rainfall. While neural networks have ability to adapt and learning process, due to recognize patterns of data from input need training to prediction. And Levenberg-Marquardt algorithm is used for training because of effectiveness and convergence acceleration.
The results showed five models NFIS-LM developed using a variety of membership functions as input obtained that model NFIS-LM with twelve of membership functions and use four inputs, such as mean temperature, average humidity, wind speed and mean sea level pressure gives best results to predict rainfall with values Mean Square Error (MSE) of 0.0262050. When compared with model NN-Backpropagation, NFIS-LM models showed lower accuracy. It is shown from MSE generated where model NN-Backpropagation generate MSE of 0.0167990.
Keywords
Full Text:
PDFReferences
Lisa, Y., 2012, Implementasi Algoritma Pelatihan Levenberg Marquardt dan Bayes Regularisasi pada Jaringan Syaraf Tiruan untuk Prediksi Curah Hujan. Tesis, Jurusan Ilmu Komputer UGM, Yogyakarta.
[2] Asklany, S.A., Elhelow, K., Youssef, I.K. dan El-wahab, M.A., 2007, Rainfall Events Prediction using Rule-Based Fuzzy Inference System, Atmospheric Research 101, 228-236.
[3] Shu, C. dan Ouarda, T.B.M.J., 2008, Regional Flood Frequency Analysis at Ungauged Sites using the Adaptive Neuro-Fuzzy Inference System. Journal of Hydrology, 31-43.
[4] Abraham, A., Philip, N.S. dan Joseph, B., 2001, Long Term Rain Forecasting Using Soft Computing Model, Publication of the Society for Computer Simulation International, Prague, Czech Republic, 1044-1048.
[5] Gustari, I., Hadi, S. dan Renggono, F., 2012, Akurasi Prediksi Curah Hujan Harian Operasional Di Jabodetabek: Perbandingan Dengan Model WRF, Jurnal Meteorologi dan Geofisika, 119-130.
[6] Hermantoro, 2011, Pengaruh Perubahan Iklim pada Produktivitas Perkebunan Kelapa Sawit Menggunakan Model Jaringan Syaraf Tiruan, Seminar Mekanisasi Pertanian, Serpong.
[7] Hagan M.T. dan Menhaj, M.B., 1994, Training Feedforward Networks with the Marquardt Algorithm, IEEE Transactions on Neural Networks, November 1994, 989-993.
[8] Yu, H. dan Wilamowski, B.M., 2011, Advanced Learning Algorithms of Neural Networks, Disertasi, Auburn University, USA.
[9] Warsito, B. dan Sumiyati S., 2007, Prediksi Curah Hujan Kota Semarang dengan Feedforward Neural Networks Menggunakan Algoritma Quasi Newton BFGS dan Levenberg-Marquardt, Jurnal PRESIPITASI, vol 3, September 2007.
[10] Naik, A.R. dan Pathan, S.K., 2012, Weather Classification and Forecasting using Backpropagation Feed-forward Neural Networks, International Journal of Scientific and Reserch Publications, vol 2, Desember 2012.
[11] Indrabayu, Harun, N., Pallu, M.S., Achmad, A. dan Febriyati, F., 2011, Prediksi Curah Hujan di Wilayah Makassar Menggunakan Metode Wavelet-Neural Network, Jurnal ELEKTRIKAL Jurusan Teknik Elektro UNHAS, vol 9, Mei-Agustus 2011.
[12] Indrabayu, Harun, N., Pallu, M.S., Achmad, A., dan Febriyati, F., 2012, Prediksi Curah Hujan Dengan Jaringan Saraf Tiruan, Jurnal PROSIDING Fakultas Teknik UNHAS, vol 6, Desember 2012.
[13] Navianti, D.R., Usadha, I.G.N.R. dan Widjajati, F.A., 2012, Penerapan Fuzzy Inference System pada Prediksi Curah Hujan di Surabaya Utara, Jurnal Sains dan Seni ITS, vol 1, September 2012.
[14] Patel, J. dan Parekh F., 2014, Forecasting Rainfall Using Adaptive Neuro-Fuzzy Inference System (ANFIS), International Journal of Application or Innovation in Engineering Management (IJAIEM), vol 3, June 2014.
DOI: https://doi.org/10.22146/ijccs.15532
Article Metrics
Abstract views : 4836 | views : 5198Refbacks
- There are currently no refbacks.
Copyright (c) 2016 IJCCS - Indonesian Journal of Computing and Cybernetics Systems
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1