Case-Based Reasoning untuk Diagnosis Penyakit Jantung
Eka Wahyudi(1), Sri Hartati(2*)
(1) Akademi Manajemen Komputer dan Informatika; Jl Gatot Subroto No. B1Ketapang, Kalimantan Barat
(2) Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Case Based Reasoning (CBR) is a computer system that used for reasoning old knowledge to solve new problems. It works by looking at the closest old case to the new case. This research attempts to establish a system of CBR for diagnosing heart disease. The diagnosis process is done by inserting new cases containing symptoms into the system, then the similarity value calculation between cases uses the nearest neighbor method similarity, minkowski distance similarity and euclidean distance similarity.
Case taken is the case with the highest similarity value. If a case does not succeed in the diagnosis or threshold <0.80, the case will be revised by experts. Revised successful cases are stored to add the systemknowledge. Method with the best diagnostic result accuracy will be used in building the CBR system for heart disease diagnosis.
The test results using medical records data validated by expert indicate that the system is able to recognize diseases heart using nearest neighbor similarity method, minskowski distance similarity and euclidean distance similarity correctly respectively of 100%. Using nearest neighbor get accuracy of 86.21%, minkowski 100%, and euclidean 94.83%Keywords
Full Text:
PDFReferences
Instalasi Catatan Medis, 2014, Data Rekam Medis, RS. Dr. Sardjito Yogyakarta, Yogyakarta.
Pal, S.K., dan Shiu, S.C.K., 2004, Fondation of Soft Case-Based Reasoning,John Willey and Sons, Inc., New Jersey.
Smelter, S.C., and Bare, B.G., 2001, Buku Ajar : Keperawatan Medikal Bedah Brunner & Suddarth, 2, 8, EGC, Jakarta.
Soeharto, I. (2004). Serangan Jantung dan Stroke Hubungannya dengan Lemak dan Kolesterol. Edisi Kedua. Jakarta : PT Gramedia Pustaka Utama.
Jha, M.K., Pakhira, D., dan Chakraborty, B., 2013, Diabetes Detection and Care Applying CBR Techniques, IJSCE, 6, 2, 132-137.
Nurdiansyah, Y., dan Hartati, S., 2014, Case-Based Reasoning untuk Pendukung Diagnosa Gangguan pada Anak Autis, Thesis, Prodi S2/S3 Ilmu Komputer, Universitas Gadjah Mada, Yogyakarta.
Guessoum, S., Laskri, M. T., dan Lieber, J., 2012, A Case-Based Reasoning System for the Diagnosis of Chronic Obstructive Pulmonary Disease, Expert Systems With Applications An International Journal. 267-273.
Hastie, T., Tibshirani, R., dan Friedman, J., 2009, The Element of Statistical Learning : Data Mining, Inference, and Prediction, Springer Series in Statistic, 2, Springer-Verlag, Inc., New York.
Nunez, H., Marre, M.S., Cortes, U., Comas, J., Martinez, M., Roda, I.R., dan Poch, M., 2004, A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situations , Original Research Article, Environmental Modelling & Software, Volume 19, Issue 9, pp 809-819.
Mergio, J.M., dan Casanovas, M., 2008, The Induced Minkowski Ordered Weighted Averaging Distance Operator, ESTYLF08, Cuencas Mineras (Mieres-Langreo), Congreso Espanol sobre Tecnologiasy Logica Fuzzy, pp 35-41.
Witten, I.H., dan Frank, E., 2005, Data Mining : Practical Machine Learning Tools and Techniques, 2, Morgan Kaufmann Publisher, San Fransisco.
DOI: https://doi.org/10.22146/ijccs.15523
Article Metrics
Abstract views : 19203 | views : 22293Refbacks
- There are currently no refbacks.
Copyright (c) 2017 IJCCS - Indonesian Journal of Computing and Cybernetics Systems
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1