Deep Learning Factor Investing in the Indonesian Stock Market
Fawwaz Atha Rohmatullah(1*), Farrikh Alzami(2), Ramadhan Rakhmat Sani(3), Ika Novita Dewi(4), Sri Winarno(5), Teguh Sulistyono(6)
(1) Universitas Dian Nuswantoro
(2) Universitas Dian Nuswantoro
(3) Universitas Dian Nuswantoro
(4) Universitas Dian Nuswantoro
(5) Universitas Dian Nuswantoro
(6) Universitas Dian Nuswantoro
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
J. Fan, Z. Ke, Y. Liao, and A. Neuhierl, “Structural Deep Learning in Conditional Asset Pricing,” SSRN Electronic Journal, Jan. 2022, doi: 10.2139/ssrn.4117882.
V. Azevedo, G. S. Kaiser, and S. Mueller, “Stock market anomalies and machine learning across the globe,” Journal of Asset Management, vol. 24, no. 5, pp. 419–441, 2023, doi: 10.1057/s41260-023-00318-z.
M. Liu, G. Li, J. Li, X. Zhu, and Y. Yao, “Forecasting the price of Bitcoin using deep learning,” Financ Res Lett, vol. 40, p. 101755, 2021, doi: https://doi.org/10.1016/j.frl.2020.101755.
S. Relan and R. K. Rambola, “Big Bird-disentangled representation and adaptive contrast transformer for abstractive text summarization with contrast attention,” Eng Appl Artif Intell, vol. 162, p. 112536, 2025, doi:
https://doi.org/10.1016/j.engappai.2025.112536.
C. Jana, S. Banerjee, S. Maur, and S. Dalai, “Customized CNN based classification of power system disturbances using recurrence plots,” Electric Power Systems Research, vol. 241, p. 111370, 2025, doi: https://doi.org/10.1016/j.epsr.2024.111370.
J. W. Goodell, S. Ben Jabeur, F. Saâdaoui, and M. A. Nasir, “Explainable artificial intelligence modeling to forecast bitcoin prices,” International Review of Financial Analysis, vol. 88, p. 102702, 2023, doi: https://doi.org/10.1016/j.irfa.2023.102702.
X.-Q. Chen, C.-Q. Ma, Y.-S. Ren, Y.-T. Lei, N. Q. A. Huynh, and S. Narayan, “Explainable artificial intelligence in finance: A bibliometric review,” Financ Res Lett, vol. 56, p. 104145, 2023, doi: https://doi.org/10.1016/j.frl.2023.104145.
Y. Taghizadegan, N. Jafarnia Dabanloo, K. Maghooli, and A. Sheikhani, “Obstructive sleep apnea event prediction using recurrence plots and convolutional neural networks (RP-CNNs) from polysomnographic signals,” Biomed Signal Process Control, vol. 69, p. 102928, 2021, doi: https://doi.org/10.1016/j.bspc.2021.102928.
C. Wang, Y. Chen, S. Zhang, and Q. Zhang, “Stock market index prediction using deep Transformer model,” Expert Syst Appl, vol. 208, p. 118128, 2022, doi: https://doi.org/10.1016/j.eswa.2022.118128.
S. Deng, C. Aldrich, X. Liu, and F. Zhang, “Explainability in Reservoir Well-logging Evaluation: Comparison of Variable Importance Analysis with Shapley Value Regression, SHAP and LIME,” IFAC-PapersOnLine, vol. 58, no. 22, pp. 66–71, 2024, doi: https://doi.org/10.1016/j.ifacol.2024.09.292.
T. Zhu, “Latent factor model in asset pricing: A deep learning approach in the Chinese stock market,” Financ Res Lett, vol. 86, p. 108519, 2025, doi: https://doi.org/10.1016/j.frl.2025.108519.
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1






