Optimization of Palm Fruit Ripeness Detection With Yolov11 on CPU

https://doi.org/10.22146/ijccs.111253

Iqbal Ramadhan Anniswa(1*), Wahyu Syaifullah JAUHARIS SAPUTRA(2), Mohammad Idhom(3), Alfan Rizaldy Pratama(4), I Gede Susrama Mas Diyasa(5)

(1) Universitas Pembangunan Nasional “Veteran” Jawa Timur
(2) 
(3) 
(4) 
(5) 
(*) Corresponding Author

Abstract


The palm oil industry is one of the strategic sectors that contributes significantly to the Indonesian economy. However, this industry still faces various challenges, particularly in terms of operational efficiency and the implementation of digitalization, especially at the level of independent farmers who often still use manual methods to determine the ripeness of the fruit. This manual process is prone to subjectivity, which can impact harvest quality and supply chain efficiency. To address this issue, this study proposes a palm oil fruit ripeness detection system based on the YOLOv11 algorithm, chosen for its advantages in inference speed and detection accuracy, especially when run on devices with limited resources. The developed model was then implemented using the ONNX Runtime Framework. This enables accelerated inference processes and supports portability on hardware with limited resources. Test results show that the model achieves an mAP@50 accuracy of 90.2% with an average latency of around 255 ms to 300 ms. With these achievements, this system is not only reliable in detecting fruit ripeness, but also efficient in processing time and relevant to support digital transformation in the palm oil plantation sector.

Keywords


Object Detection; Ripness Crude Oil Palm Fruit; Yolov11; ONNX Runtime; Central Processing Unit

Full Text:

PDF


References

S. Fevriera and F. S. Devi, “Analisis produksi kelapa sawit Indonesia: pendekatan mikro dan makro ekonomi,” Jurnal Transformatif, vol. XII, no. 1, May 2023. doi: 10.58300/transformatif.v12i1.435.

G. Oktariani, “Klasterisasi Pulau Penghasil Kelapa Sawit di Indonesia Berdasarkan Luas Areal, Produksi dan Tenaga Kerja Menggunakan Metode K-Means Clustering”, jptam, vol. 9, no. 1, pp. 8735–8744, Mar. 2025.

P. Purwadi, E. Firmansyah, and D. Nurjanah, "CHALLENGES AND GAP CAPACITY OF PALM OIL FARMERS IN ACCESSING DIGITAL EXTENSION AND ASSISTANCE SERVICES," Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, vol. 8, no. 2, pp. 471-484, Jun. 2024. https://doi.org/10.14710/agrisocionomics.v8i2.18099

Maulidiah, I.A., Praytino, G., & Subagiyo, A. 2021. The Role of Agricultural Extension on The Development of Farmers Group (Case Study: Pre Sub-district, Blitar Regency, East Java). SOCA: Journal Sosial, Ekonomi Pertanian, vol 15, no. 3, pp. 482-494 doi: https://doi.org/10.24843/SOCA.2021.v15.i03.p06

Singh, R., Slotznick, W., & Stein, D. 2023. Digital tool for rural agiculture extension: Impact of mobile-based advisiores on Agricultural practices in sounthern India. Journal of the Agricultural and Applied Economics Association, October 2022: pp. 4-19 doi : https://doi.org/10.1002/jaa2.42

N. N. S. Sukowati, “Pengaruh Fluktuasi Harga Tandan Buah Segar (TBS) terhadap Kesejahteraan Petani Kelapa Sawit di Indonesia”, JESI, vol. 2, no. 3, hlm. 282-296, Desember 2022. doi: https://doi.org/10.11594/jesi.02.03.05

Fajar Aga Wandana, Ardiansyah Hamid, Sri Wahyuni and Anna Dhora, “Dampak Perubahan Iklim terhadap Produktivitas Kelapa Sawit (elaeis guineensis jacq) di PT Inti Indosawit Subur Desa Delima Jaya Koperasi Mulus Rahayu”, Jurnal Teknik Industri Terintegrasi, Vol 7 Issue 4, pp. 2511-2517, 2024. doi: https://doi.org/10.31004/jutin.v7i4.37313

T. Anggrahini, S. Widyastuti, and M. Sihite, “Pengaruh internal kontrol, organization behaviour dan digitalisasi terhadap kinerja perusahaan,” Jurnal LOCUS: Penelitian & Pengabdian, vol. 2, no. 11, Nov. 2023. doi: 10.58344/locus.v2i11.1860.

Basuki, Basuki & Suwarno, Noorlailie. (2021). Teknologi Digital Memediasi Dampak Strategi Bisnis Terhadap Kinerja UMKM di Nusa Tenggara Barat. Jurnal Ekonomi dan Keuangan (EKUITAS). Vol 5 Issue 3, pp. 300-320, 2021. Doi: 10.24034/j25485024.y2021.v5.i3.4892

C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, "CSPNet: A new backbone that can enhance learning capability of CNN," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW)*, Seattle, WA, USA, Jun. 14–19, 2020, pp. 1571–1580, doi: 10.1109/CVPRW50498.2020.00203.

Suharjito, Muhammad Asrol, Didit Nugeraha Utama, Franz Adeta Junior, Marimin. “Real-Time Oil Palm Fruit Grading System Using Smartphone and Modified YOLOv4”, IEEE Journal, Vol 11,2023. doi: https://doi.org/10.1109/ACCESS.2023.3285537

Kusuma, P. C., & Soewito, B, “Multi-Object Detection Using YOLOv7 Object Detection Algorithm on Mobile Device”, Journal of Applied Engineering and Technological Science (JAETS), Vol 5, No 1, 2023. doi: https://doi.org/10.37385/jaets.v5i1.3207

A. Sharma, V. Kumar, and L. Longchamps, "Comparative performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN models for detection of multiple weed species," Smart Agricultural Technology, vol. 9, Art. no. 100648, Nov. 2024, doi: 10.1016/j.atech.2024.100648.

Bilal, M., Podishetti, R.; Koval, L.; Gaafar, M.A.; Grossmann, D.; Bregulla, M. The Effect of Annotation Quality on Wear Semantic Segmentation by CNN. Sensors 2024, 24, 4777. doi: https://doi.org/10.3390/s24154777

Peng, R., Liu, J., Fu, X. et al. Application of machine vision method in tool wear monitoring. Int J Adv Manuf Technol. no. 116, pp. 1357–1372, (2021). https://doi.org/10.1007/s00170-021-07522-4

G. Alfonso-Francia, J. C. Pedraza-Ortega, M. Badillo-Fernández, M. Toledano-Ayala, M. A. Aceves-Fernandez, J. Rodriguez-Resendiz, S.-B. Ko, and S. Tovar-Arriaga, "Performance evaluation of different object detection models for the segmentation of optical cups and discs," *Diagnostics*, vol. 12, no. 12, p. 3031, Dec. 2022, doi: 10.3390/diagnostics12123031.

S. Reddy, N. Pillay, and N. Singh, "Comparative evaluation of convolutional neural network object detection algorithms for vehicle detection," *J. Imaging*, vol. 10, p. 162, 2024, doi: 10.3390/jimaging10070162.

N. Aloufi, A. Alnori, V. Thayananthan, and A. Basuhail, "Object detection performance evaluation for autonomous vehicles in sandy weather environments," *Appl. Sci.*, vol. 13, p. 10249, 2023, doi: 10.3390/app131810249.

T. B. Sasongko, Haryoko, dan A. Amrullah, “Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 4, pp. 763-768, 2023, doi: 10.25126/jtiik.2024106583

Chung, S.-W.; Hong, S.-S.,Kim, B.-K. Hyperparameter Tuning Technique to Improve the Accuracy of Bridge Identification Model. Buildings 2024, 14, 3146. https://doi.org/10.3390/buildings14103146

J. Tian, Q. Jin, Y. Wang, J. Yang, S. Zhang, dan D. Sun, “Performance analysis of deep learning-based object detection algorithms on COCO benchmark: a comparative study,” Journal of Engineering and Applied Science, vol. 71, art. no. 76, 2024, doi: 10.1186/s44147-024-00411-z.

Z. Yang, et al., “A High-Precision Detection Model of Small Objects in Maritime UAV Perspective Based on Improved YOLOv5,” Journal of Marine Science and Engineering, vol. 11, no. 9, art. 1680, 2023, doi:10.3390/jmse1091680

L.-H. He, Y.-Z. Zhou, Lei Liu, Wei Cao, dan J.-H. Ma, “Research on object detection and recognition in remote sensing images based on YOLOv11,” Scientific Reports, vol. 15, art. no. 14032, 2025, doi:10.1038/s41598-025-96314-x.

Y. Shen, Z. Yang, Z. Khan, H. Liu, W. Chen, and S. Duan, “Optimization of Improved YOLOv8 for Precision Tomato Leaf Disease Detection in Sustainable Agriculture,” Sensors, vol. 25, no. 5, p. 1398, Feb. 2025, doi: 10.3390/s25051398.

Chung, S.-W.; Hong, S.-S.,Kim, B.-K. Hyperparameter Tuning Technique to Improve the Accuracy of Bridge Damage Identification Model. Buildings 2024, 14, 3146. https://doi.org/10.3390/buildings14103146

Kong, G.,Hong, Y.-G. Inference Latency Prediction Approaches Using Statistical Information for Object Detection in Edge Computing. Appl. Sci. 2023, 13, 9222. https://doi.org/10.3390/app13169222



DOI: https://doi.org/10.22146/ijccs.111253

Article Metrics

Abstract views : 1009 | views : 138

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2