Optimization of Palm Fruit Ripeness Detection With Yolov11 on CPU
Iqbal Ramadhan Anniswa(1*), Wahyu Syaifullah JAUHARIS SAPUTRA(2), Mohammad Idhom(3), Alfan Rizaldy Pratama(4), I Gede Susrama Mas Diyasa(5)
(1) Universitas Pembangunan Nasional “Veteran” Jawa Timur
(2) 
(3) 
(4) 
(5) 
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
S. Fevriera and F. S. Devi, “Analisis produksi kelapa sawit Indonesia: pendekatan mikro dan makro ekonomi,” Jurnal Transformatif, vol. XII, no. 1, May 2023. doi: 10.58300/transformatif.v12i1.435.
G. Oktariani, “Klasterisasi Pulau Penghasil Kelapa Sawit di Indonesia Berdasarkan Luas Areal, Produksi dan Tenaga Kerja Menggunakan Metode K-Means Clustering”, jptam, vol. 9, no. 1, pp. 8735–8744, Mar. 2025.
P. Purwadi, E. Firmansyah, and D. Nurjanah, "CHALLENGES AND GAP CAPACITY OF PALM OIL FARMERS IN ACCESSING DIGITAL EXTENSION AND ASSISTANCE SERVICES," Agrisocionomics: Jurnal Sosial Ekonomi Pertanian, vol. 8, no. 2, pp. 471-484, Jun. 2024. https://doi.org/10.14710/agrisocionomics.v8i2.18099
Maulidiah, I.A., Praytino, G., & Subagiyo, A. 2021. The Role of Agricultural Extension on The Development of Farmers Group (Case Study: Pre Sub-district, Blitar Regency, East Java). SOCA: Journal Sosial, Ekonomi Pertanian, vol 15, no. 3, pp. 482-494 doi: https://doi.org/10.24843/SOCA.2021.v15.i03.p06
Singh, R., Slotznick, W., & Stein, D. 2023. Digital tool for rural agiculture extension: Impact of mobile-based advisiores on Agricultural practices in sounthern India. Journal of the Agricultural and Applied Economics Association, October 2022: pp. 4-19 doi : https://doi.org/10.1002/jaa2.42
N. N. S. Sukowati, “Pengaruh Fluktuasi Harga Tandan Buah Segar (TBS) terhadap Kesejahteraan Petani Kelapa Sawit di Indonesia”, JESI, vol. 2, no. 3, hlm. 282-296, Desember 2022. doi: https://doi.org/10.11594/jesi.02.03.05
Fajar Aga Wandana, Ardiansyah Hamid, Sri Wahyuni and Anna Dhora, “Dampak Perubahan Iklim terhadap Produktivitas Kelapa Sawit (elaeis guineensis jacq) di PT Inti Indosawit Subur Desa Delima Jaya Koperasi Mulus Rahayu”, Jurnal Teknik Industri Terintegrasi, Vol 7 Issue 4, pp. 2511-2517, 2024. doi: https://doi.org/10.31004/jutin.v7i4.37313
T. Anggrahini, S. Widyastuti, and M. Sihite, “Pengaruh internal kontrol, organization behaviour dan digitalisasi terhadap kinerja perusahaan,” Jurnal LOCUS: Penelitian & Pengabdian, vol. 2, no. 11, Nov. 2023. doi: 10.58344/locus.v2i11.1860.
Basuki, Basuki & Suwarno, Noorlailie. (2021). Teknologi Digital Memediasi Dampak Strategi Bisnis Terhadap Kinerja UMKM di Nusa Tenggara Barat. Jurnal Ekonomi dan Keuangan (EKUITAS). Vol 5 Issue 3, pp. 300-320, 2021. Doi: 10.24034/j25485024.y2021.v5.i3.4892
C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, "CSPNet: A new backbone that can enhance learning capability of CNN," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW)*, Seattle, WA, USA, Jun. 14–19, 2020, pp. 1571–1580, doi: 10.1109/CVPRW50498.2020.00203.
Suharjito, Muhammad Asrol, Didit Nugeraha Utama, Franz Adeta Junior, Marimin. “Real-Time Oil Palm Fruit Grading System Using Smartphone and Modified YOLOv4”, IEEE Journal, Vol 11,2023. doi: https://doi.org/10.1109/ACCESS.2023.3285537
Kusuma, P. C., & Soewito, B, “Multi-Object Detection Using YOLOv7 Object Detection Algorithm on Mobile Device”, Journal of Applied Engineering and Technological Science (JAETS), Vol 5, No 1, 2023. doi: https://doi.org/10.37385/jaets.v5i1.3207
A. Sharma, V. Kumar, and L. Longchamps, "Comparative performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN models for detection of multiple weed species," Smart Agricultural Technology, vol. 9, Art. no. 100648, Nov. 2024, doi: 10.1016/j.atech.2024.100648.
Bilal, M., Podishetti, R.; Koval, L.; Gaafar, M.A.; Grossmann, D.; Bregulla, M. The Effect of Annotation Quality on Wear Semantic Segmentation by CNN. Sensors 2024, 24, 4777. doi: https://doi.org/10.3390/s24154777
Peng, R., Liu, J., Fu, X. et al. Application of machine vision method in tool wear monitoring. Int J Adv Manuf Technol. no. 116, pp. 1357–1372, (2021). https://doi.org/10.1007/s00170-021-07522-4
G. Alfonso-Francia, J. C. Pedraza-Ortega, M. Badillo-Fernández, M. Toledano-Ayala, M. A. Aceves-Fernandez, J. Rodriguez-Resendiz, S.-B. Ko, and S. Tovar-Arriaga, "Performance evaluation of different object detection models for the segmentation of optical cups and discs," *Diagnostics*, vol. 12, no. 12, p. 3031, Dec. 2022, doi: 10.3390/diagnostics12123031.
S. Reddy, N. Pillay, and N. Singh, "Comparative evaluation of convolutional neural network object detection algorithms for vehicle detection," *J. Imaging*, vol. 10, p. 162, 2024, doi: 10.3390/jimaging10070162.
N. Aloufi, A. Alnori, V. Thayananthan, and A. Basuhail, "Object detection performance evaluation for autonomous vehicles in sandy weather environments," *Appl. Sci.*, vol. 13, p. 10249, 2023, doi: 10.3390/app131810249.
T. B. Sasongko, Haryoko, dan A. Amrullah, “Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 4, pp. 763-768, 2023, doi: 10.25126/jtiik.2024106583
Chung, S.-W.; Hong, S.-S.,Kim, B.-K. Hyperparameter Tuning Technique to Improve the Accuracy of Bridge Identification Model. Buildings 2024, 14, 3146. https://doi.org/10.3390/buildings14103146
J. Tian, Q. Jin, Y. Wang, J. Yang, S. Zhang, dan D. Sun, “Performance analysis of deep learning-based object detection algorithms on COCO benchmark: a comparative study,” Journal of Engineering and Applied Science, vol. 71, art. no. 76, 2024, doi: 10.1186/s44147-024-00411-z.
Z. Yang, et al., “A High-Precision Detection Model of Small Objects in Maritime UAV Perspective Based on Improved YOLOv5,” Journal of Marine Science and Engineering, vol. 11, no. 9, art. 1680, 2023, doi:10.3390/jmse1091680
L.-H. He, Y.-Z. Zhou, Lei Liu, Wei Cao, dan J.-H. Ma, “Research on object detection and recognition in remote sensing images based on YOLOv11,” Scientific Reports, vol. 15, art. no. 14032, 2025, doi:10.1038/s41598-025-96314-x.
Y. Shen, Z. Yang, Z. Khan, H. Liu, W. Chen, and S. Duan, “Optimization of Improved YOLOv8 for Precision Tomato Leaf Disease Detection in Sustainable Agriculture,” Sensors, vol. 25, no. 5, p. 1398, Feb. 2025, doi: 10.3390/s25051398.
Chung, S.-W.; Hong, S.-S.,Kim, B.-K. Hyperparameter Tuning Technique to Improve the Accuracy of Bridge Damage Identification Model. Buildings 2024, 14, 3146. https://doi.org/10.3390/buildings14103146
Kong, G.,Hong, Y.-G. Inference Latency Prediction Approaches Using Statistical Information for Object Detection in Edge Computing. Appl. Sci. 2023, 13, 9222. https://doi.org/10.3390/app13169222
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1






