Prediction Sentiment Analysis Grab Reviews Using SVM Linear Based Streamlit

https://doi.org/10.22146/ijccs.104924

Muhammad Taufiq Hidayat(1*), Muhammad Arifin(2), Syafiul Muzid(3)

(1) Muria Kudus University
(2) Muria Kudus University
(3) Muria Kudus University
(*) Corresponding Author

Abstract


Advances in digital technology have accelerated the transformation of online transportation services, intensifying competition and driving innovations to enhance service quality. As a leading platform in Indonesia, Grab faces various challenges, including driver service quality, payment systems, and application stability, as reflected in user reviews on Google Play Store. This study aims to gain strategic insights by evaluating a linear kernel-based Support Vector Machine (SVM) model integrated into the Streamlit platform to predict the sentiment of Grab user reviews. Data were collected via web scraping and processed using tokenization, stopword removal, and stemming techniques to improve model accuracy. The model was implemented on an interactive Streamlit website featuring two main functionalities: sentiment prediction and plot visualization. The sentiment prediction feature presents sentiment distribution, performance metrics, a confusion matrix, and a classification report, while the visualization feature displays interactive word clouds, bar charts, and pie charts. Model evaluation reveals an accuracy of 83% in the Streamlit environment. These findings are expected to contribute to developers and stakeholders in enhancing Grab services and advancing more effective sentiment prediction methods.


Keywords


Sentiment Prediction; SVM Linear; Streamlit; Grab; Online Transportation

Full Text:

PDF


References

A. Yosediputra and E. Supriyono, “EFFECT OF PERCEIVED USEFULNESS AND PERCEIVED EASE OF USE TO USAGE DECISION GRAB ONLINE TRANSPORTATION SERVICE IN SIDOARJO REGENCY AREA,” International Journal of Economy, Education, and Entrepreneurship, vol. 4, no. 2, pp. 408–418, 2024, doi: 10.53067/ije3.v4i2.

A. Zahira Haerul, “SEIKO : Journal of Management & Business Pengaruh User Interface, Price Discount, Reputasi Perusahaan, dan Kemudahan Penggunaan terhadap Keputusan Pembelian Melalui Aplikasi Grab oleh Konsumen Millennials Di Kota Makassar,” SEIKO : Journal of Management & Business, vol. 7, no. 1, pp. 652–664, 2024.

I. Sugiyarto, S. Anggraeni, U. Faddilah, and A. A. Muzaffar, “Sentimen Analisis Pengguna Aplikasi Grab Menggunakan Algoritma Naive Bayes Classifier dan Support Vector Machine,” JURNAL TEKNIKA, vol. 18, no. 1, pp. 331–341, 2024.

A. Ar’bah Lailany and S. Lestari, “Analisis Sentimen Publik Terhadap Penurunan Jumlah Pernikahan di Indonesia menggunakan Algoritma K-Nearest Neighbors (KNN),” Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK), vol. 5, no. 3, pp. 3043–3053, 2024, [Online]. Available: https://journal.stmiki.ac.id

A. Fatkhudin, F. Adi Artanto, N. Abiyu Safli, and D. Wibowo, “Decision Tree Berbasis SMOTE dalam Analisis Sentimen Penggunaan Artificial Intelligence untuk Skripsi,” Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 8, no. 2, pp. 494–505, 2024, doi: 10.33395/remik.v8i2.13531.

D. Pradipta and E. Widodo, “Sentiment Analysis on Social Media using Bidirectional Encoder from Transformers (Case Study : Covid-19 Omicron),” INFORMASI (Jurnal Informatika dan Sistem Informasi), vol. 16, no. 2, pp. 267–281, 2024.

M. R. Nurhusen, J. Indra, and K. A. Baihaqi, “Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, pp. 276–282, Jan. 2023, doi: 10.30865/mib.v7i1.5491.

E. Setyaningtyas and K. Nugroho, “Analisis Sentimen Media Sosial Pada Pengguna Twitter Terhadap Pemilu 2024 Menggunakan Metode LSTM,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 9, no. 2, pp. 673–683, 2024, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik

R. Onsu, D. F. Sengkey, and F. D. Kambey, “IMPLEMENTASI BI-LSTM DENGAN EKSTRAKSI FITUR WORD2VEC UNTUK PENGEMBANGAN ANALISIS SENTIMEN APLIKASI IDENTITAS KEPENDUDUKAN DIGITAL,” Jurnal Teknologi Terpadu, vol. 10, no. 1, pp. 46–55, 2024.

S. D. S. Kurniawan and A. Fauzy, “Penggunaan Naïve Bayes Classifier dalam Analisis Sentimen Ulasan Aplikasi McDonald’s: Perspektif Pengguna di Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, p. 1545, Jul. 2024, doi: 10.30865/mib.v8i3.7765.

K. M. Elistiana, Bagus Adhi Kusuma, P. Subarkah, and H. A. Awal Rozaq, “IMPROVEMENT OF NAIVE BAYES ALGORITHM IN SENTIMENT ANALYSIS OF SHOPEE APPLICATION REVIEWS ON GOOGLE PLAY STORE,” Jurnal Teknik Informatika (JUTIF), vol. 4, no. 6, pp. 1431–1436, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1486.

B. J. Katiandhago, A. Mustolih, W. D. Susanto, P. Subarkah, and C. I. Satrio Nugroho, “Sentiment Analysis of Twitter Cases of Riots at Kanjuruhan Stadium Using the Naive Bayes Method,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 5, no. 1, pp. 302–312, Apr. 2023, doi: 10.47709/cnahpc.v5i1.2196.

R. Aryanti, T. Misriati, and A. Sagiyanto, “Analisis Sentimen Aplikasi Primaku Menggunakan Algoritma Random Forest dan SMOTE untuk Mengatasi Ketidakseimbangan Data,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 1, pp. 218–227, Nov. 2023, doi: 10.47065/josyc.v5i1.4562.

Sarimole. Frencis Matheos and Kudrat, “Analisis Sentimen Terhadap Aplikasi Satu Sehat Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” Jurnal Sains dan Teknologi, vol. 5, no. 3, pp. 783–790, 2024, doi: 10.55338/saintek.v5i1.2702.

W. Ningsih, B. Alfianda, R. Rahmaddeni, and D. Wulandari, “Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 556–562, Feb. 2024, doi: 10.57152/malcom.v4i2.1253.

D. Leni, A. Karudin, M. R. Abbas, J. K. Sharma, and A. Adriansyah, “OPTIMIZING STAINLESS STEEL TENSILE STRENGTH ANALYSIS: THROUGH DATA EXPLORATION AND MACHINE LEARNING DESIGN WITH STREAMLIT,” EUREKA, Physics and Engineering, vol. 2024-September, no. 5, pp. 73–88, Sep. 2024, doi: 10.21303/2461-4262.2024.003296.

V. Deshmane, J. Musale, S. Joshi, V. Chinta, K. Gokak, and I. Dalbhanjan, “Web Scraping for E-Commerce Website To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code,” International Journal for Innovative Engineering and Management Research, vol. 13, no. 4, pp. 216–224, 2024, doi: 10.48047/IJIEMR/V13/ISSUE.

E. I. Elsedimy, S. M. M. AboHashish, and F. Algarni, “New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization,” Multimed Tools Appl, vol. 83, no. 8, pp. 23901–23928, Mar. 2024, doi: 10.1007/s11042-023-16194-z.

B. Ramadhani and R. R. Suryono, “Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 2, p. 714, Apr. 2024, doi: 10.30865/mib.v8i2.7458.



DOI: https://doi.org/10.22146/ijccs.104924

Article Metrics

Abstract views : 108 | views : 36

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2