Optimization of Gradient Boosting Method for Predicting Narcissistic Personality Disorder (NPD) in Employees

Achmad Solichin(1*), Bagas Pramudita(2), Painem Painem(3), Anindya Putri Pradiptha(4)
(1) Universitas Budi Luhur
(2) Universitas Budi Luhur
(3) Universitas Budi Luhur
(4) Universitas Budi Luhur
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
S. Grapsas, E. Brummelman, M. D. Back, and J. J. A. Denissen, “The ‘Why’ and ‘How’ of Narcissism: A Process Model of Narcissistic Status Pursuit,” Perspectives on Psychological Science, vol. 15, no. 1, pp. 150–172, Jan. 2020, doi: 10.1177/1745691619873350.
E. L. Kacel, N. Ennis, and D. B. Pereira, “Narcissistic Personality Disorder in Clinical Health Psychology Practice: Case Studies of Comorbid Psychological Distress and Life-Limiting Illness,” Behavioral Medicine, vol. 43, no. 3, pp. 156–164, Jul. 2017, doi: 10.1080/08964289.2017.1301875.
E. Y. L. Ong et al., “Narcissism, extraversion and adolescents’ self-presentation on Facebook,” Pers Individ Dif, vol. 50, no. 2, pp. 180–185, Jan. 2011, doi: 10.1016/j.paid.2010.09.022.
E. Grijalva et al., “Gender differences in narcissism: A meta-analytic review.,” Psychol Bull, vol. 141, no. 2, pp. 261–310, Mar. 2015, doi: 10.1037/a0038231.
W. D. Ningrum and S. Nuzulia, “Behavioral Manifestations of Dark Personality Narcissism: an Indigenous Study on Indonesian Workers,” Journal of Social and Industrial Psychology, vol. 12, no. 1, pp. 9–24, Jun. 2023, doi: 10.15294/sip.v12i1.68844.
S. Kristanto, “Tingkat Kecenderungan Narsistik Pengguna Facebook,” Journal of Social and Industrial Psychology , vol. 1, no. 1, pp. 1–6, 2012, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/sip
P. Kaushik, K. Bansal, and Y. Kumar, “Deep Learning in Mental Health: An In-Depth Analysis of Prediction Systems,” in 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI), IEEE, Nov. 2023, pp. 364–369. doi: 10.1109/ICCSAI59793.2023.10421590.
L. S. Khoo, M. K. Lim, C. Y. Chong, and R. McNaney, “Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing Approaches,” Sensors, vol. 24, no. 2, p. 348, Jan. 2024, doi: 10.3390/s24020348.
T. Mokheleli, T. Bokaba, and T. Museba, “An In-Depth Comparative Analysis of Machine Learning Techniques for Addressing Class Imbalance in Mental Health Prediction.,” in ACIS 2023 Proceedings, 2023. [Online]. Available: https://aisel.aisnet.org/acis2023
E. Gentili et al., “Machine learning from real data: A mental health registry case study,” Computer Methods and Programs in Biomedicine Update, vol. 5, Jan. 2024, doi: 10.1016/j.cmpbup.2023.100132.
K. Jornkokgoud et al., “Predicting narcissistic personality traits from brain and psychological features: A supervised machine learning approach,” Soc Neurosci, vol. 18, no. 5, pp. 257–270, Sep. 2023, doi: 10.1080/17470919.2023.2242094.
K. Katiyar, H. Fatma, and S. Singh, “Predicting Anxiety, Depression and Stress in Women Using Machine Learning Algorithms,” in Combating Women’s Health Issues with Machine Learning, Boca Raton: CRC Press, 2023, pp. 22–40. doi: 10.1201/9781003378556-2.
A. Priya, S. Garg, and N. P. Tigga, “Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1258–1267. doi: 10.1016/j.procs.2020.03.442.
J. Kim, J. Lee, E. Park, and J. Han, “A deep learning model for detecting mental illness from user content on social media,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-68764-y.
A. Al-Ezzi, N. Yahya, N. Kamel, I. Faye, K. Alsaih, and E. Gunaseli, “Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity,” IEEE Access, vol. 9, pp. 86899–86913, 2021, doi: 10.1109/ACCESS.2021.3089358.
F. Ceccarelli and M. Mahmoud, “Multimodal temporal machine learning for Bipolar Disorder and Depression Recognition,” Pattern Analysis and Applications, vol. 25, no. 3, pp. 493–504, Aug. 2022, doi: 10.1007/s10044-021-01001-y.
K. Kourou et al., “Personalized prediction of one-year mental health deterioration using adaptive learning algorithms: a multicenter breast cancer prospective study,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-33281-1.
J. Chung and J. Teo, “Single classifier vs. ensemble machine learning approaches for mental health prediction,” Brain Inform, vol. 10, no. 1, Dec. 2023, doi: 10.1186/s40708-022-00180-6.
K. Nova, “Machine Learning Approaches for Automated Mental Disorder Classification based on Social Media Textual Data,” Contemporary Issues in Behavioral and Social Sciences, vol. 7, no. 1, pp. 70–83, 2023.
P. Setiyadi, N. Prayogi, and A. Solichin, “Optimalisasi Prediksi Kehilangan Karyawan Menggunakan Teknik RFE, SMOTE, dan AdaBoost,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 4, pp. 2131–2145, 2024, doi: 10.29100/jipi.v9i4.5642.
F. H. Alfebi and M. D. Anasanti, “Improving Cardiovascular Disease Prediction by Integrating Imputation, Imbalance Resampling, and Feature Selection Techniques into Machine Learning Model,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 17, no. 1, p. 55, Feb. 2023, doi: 10.22146/ijccs.80214.

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1