Obstacles Detection in Underwater Environment Using ROV Based on Convolutional Neural Network

https://doi.org/10.22146/ijccs.101698

Purwidi Asri(1*)

(1) Politeknik Perkapalan Negeri Surabaya
(*) Corresponding Author

Abstract


Pada saat RoV berada dibawah air tidak sedikit obstacle yang dijumpai dan berpengaruh terhadap  kinerja dan keselamatan body ROV itu sendiri. Obyek yang tertangkap kamera ROV seringkali sulit untuk diidentifikasi dan dideteksi karena besarnya noise bawah air. Selain itu, sifat air yang membiaskan cahaya dan tingkat kejernihan air turut berpengaruh terhadap kualitas gambar yang dihasilkan. Untuk membantu dalam mengidentifikasi obyek yang ada di bawah air, maka pada penelitian ini proses identifikasi dilakukan dengan menggunakan Convolutional Neural Networks (CNN). CNN mengekstraksi fitur penting dari gambar melalui beberapa lapisan konvolusi. Setiap lapisan konvolusi menggunakan filter untuk mendeteksi pola seperti tepi, sudut, atau tekstur dari gambar input. Pada tahap akhir, fitur-fitur yang sudah diproses ini dihubungkan ke lapisan fully-connected yang bertindak sebagai pengklasifikasi. CNN kemudian memetakan fitur-fitur tersebut ke dalam kelas-kelas tertentu , misalnya objek seperti botol, tiang kayu, rantai, dan propeller. Dari pengujian secara real-time sistem berhasil menunjukkan performansi yang baik dengan akurasi validasi sebesar 99.25% dan akurasi klasifikasi real-time sebesar 85%. Hasil klasifikasi selanjutnya menentukan pergerakan thruster ROV.

Keywords


CNN, halangan, deteksi, klasifikasi, ROV

Full Text:

PDF


References

Y. Widiarti, W. Wirawan, and S. Suwadi, “Joint time-reversal precoding and spatial diversity technique for acoustic communication in shallow water environment,” International Journal of Intelligent Engineering and Systems, vol. 13, no.1, pp.237-247, 2020, doi: 10.22266/ijies2020.0229.22

Y. Widiarti, E. Setiawan, H.A. Prasetiyo, B. Budianto, I. Sutrisno, A. Adianto, and M.B. Rahmat, “Corrosion Detection on Ship Hull Using ROV Based on Convolutional Neural Network,” International Journal of Marine Engineering Innovation and Research, vol. 9, no.1, pp. 218-229, 2024. [Online]. Available: https://iptek.its.ac.id/index.php/ijmeir/article/view/17235 [Accessed: 1-Nov-2024]

R. Kot, “Review of Collision Avoidance and Path Planning Algorithms Used in Autonomous Underwater Vehicles,” Electronics, vol.11, no. 15, 2022 [Online]. Available: https://doi.org/10.3390/electronics11152301 [Accessed: 3-Nov-2024]

M.A. Kamel, X. Yu, Y. Zhang, “Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations: A review,” Annu. Rev. Control, vol. 49, pp.128–144, 2020 [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1367578820300031 [Accessed: 3-Nov-2024]

E. Y. Lam, “Combining gray world and retinex theory for automatic white balance in digital photography,” Proceedings of the Ninth International Symposium on Consumer Electronics, 2005, doi: 10.1109/ISCE.2005.1502356

G. Buchsbaum, “A spatial processor model for object colour perception,” Journal of the Franklin Institute, vol. 310, no. 1, pp. 1–26, 1980 [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/0016003280900587 [Accessed: 4-Nov-2024]

J. Van De Weijer, T. Gevers, and A. Gijsenij, “Edge-based color constancy,” IEEE Transactions on Image Processing, vol. 16, no. 9, pp. 2207–2214, 2010 [Online]. Available: https://staff.science.uva.nl/th.gevers/pub/GeversTIP07.pdf [Accessed: 4-Nov-2024]

R. Hummel, “Image enhancement by histogram transformation,” Computer Graphics and Image Processing, vol. 6, no. 2, pp. 184–195, 1977 [Online]. Available:https://www.sciencedirect.com/science/article/abs/pii/S0146664X77800117 [Accessed: 29-Okt-2024]

A. R. Awwalin, E. Setiawati, and C. Anam, "Implementasi Metode Contrast Limited Adaptive Histogram Equalization Dan Laplacian Of Gaussian Filter Untuk Peningkatan Kontras Citra CT," BERKALA FISIKA, vol. 24, no. 1, pp. 35-43, Jul. 2021. [Online]. Available: https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/39825 [Accessed: 25-Okt-2024]

C.C. Chang, J.Y. Hsiao, and C.P. Hsieh, "An Adaptive Median Filter for Image Denoising," Second International Symposium on Intelligent Information Technology Application, Shanghai, China, 2008, pp. 346-350, doi: 10.1109/IITA.2008.259.

C.J. Prabhakar, P.U.P. Kumar, “Underwater image denoising using adaptive wavelet subband thresholding,” Proceedings of the 2010 International Conference on Signal and Image Processing, Chennai, India, 15–17 December 2010; pp. 322–327, doi: 10.1109/ICSIP.2010.5697491

Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," in IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999-7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827.

Q. Xie, Y. Wang, J. Ding, and J. Niu, "Light Convolutional Neural Network for Digital Predistortion of Radio Frequency Power Amplifiers," in IEEE Communications Letters, vol. 28, no. 10, pp. 2377-2381, Oct. 2024, doi: 10.1109/LCOMM.2024.3443104.

Z. Gao, Z. Lu, J. Wang, S. Ying, and J. Shi, "A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images," in IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 7, pp. 3163-3173, July 2022, doi: 10.1109/JBHI.2022.3153671.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.

Z. Wang, K. Xu, S. Wu, L. Liu, L. Liu, and D. Wang, "Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2," in IEEE Access, vol. 8, pp. 116569-116585, 2020, doi: 10.1109/ACCESS.2020.3004198.

Q. Xie, D. Zhou, R. Tang, and H. Feng, "A Deep CNN-Based Detection Method for Multi-Scale Fine-Grained Objects in Remote Sensing Images," in IEEE Access, vol. 12, pp. 15622-15630, 2024, doi: 10.1109/ACCESS.2024.3356716.



DOI: https://doi.org/10.22146/ijccs.101698

Article Metrics

Abstract views : 1 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2