Gambaran elektroensefalografi pada tumor otak

https://doi.org/10.22146/bns.v19i3.73903

Bethadina Purnamawati Prasetyo Dewi(1*), Samekto Wibowo(2), Imam Rusdi(3)

(1) KSM Saraf, RS Pertamina Cilacap, Jawa Tengah
(2) Departemen Neurologi, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada, Yogyakarta
(3) Departemen Neurologi, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Electroencephalography (EEG) is a tool to record electrical activity in the brain. EEG is commonly used for determining the diagnosis of seizures or epilepsy by identifying any abnormalities in the brain such as lesions that trigger seizures.
One common cause of electrical activity disturbance in the brain is brain tumors. Brain tumors are intracranial lesions that are very likely to cause changes in the EEG profile. The presence of an EEG examination may be helpful in determining the extent of functional lesions resulting from brain tumors.
The purpose of this literature review is to provide an overview of the EEG on brain tumors from
search literatures and analysis of supporting journals.


ABSTRAK

Elektroensefalografi (EEG) merupakan alat untuk merekam aktivitas listrik di otak. EEG biasa digunakan dalam menentukan diagnosis penyakit kejang dan epilepsi dengan mengidentifikasi setiap keabnormalan pada otak seperti lesi yang memicu serangan kejang. Adanya gangguan aktivitas listrik di otak salah satunya dapat disebabkan oleh tumor otak. Tumor otak merupakan lesi intrakranial yang sangat mungkin dapat menyebabkan perubahan gambaran EEG. Keberadaan pemeriksaan EEG dapat membantu dalam menentukan luasnya lesi fungsional akibat tumor otak.
Tujuan dari penulisan tinjauan pustaka ini adalah untuk memberikan gambaran EEG pada tumor
otak berdasarkan hasil pencarian dan analisis jurnal dan literatur yang mendukung.


Keywords


brain tumor, electroencephalography (EEG)

Full Text:

PDF


References

Tatum IV WO, editor. Handbook of EEG interpretation. United States of America: Demos Medical Publishing; 2014.

St. Louis EK, Frey LC, Britton JW, American Epilepsy Society. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. United States of America: American Epilepsy Society; 2016.

Kreitzer N, Huynh M, Foreman B. Blood flow and continuous EEG changes during symptomatic plateau waves. Brain Sciences. 2018;8(1):14.

van Dellen E, Hillebrand A, Douw L, Heimans JJ, Reijneveld JC, Stam CJ. Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. Neuroimage. 2013;83:524-532.

Sharanreddy M, Kulkarni PK. Can EEG test helps in identifying brain tumor?. International Journal of Health and Medical Engineering. 2013;7(11):703-708.

Andraus ME, Alves-Leon SV. Non-epileptiform EEG abnormalities: an overview. Arquivos de Neuro-Psiquiatria. 2011;69(5):829-835.

Lothman EW. The neurobiology of epileptiform discharges. American Journal of EEG Technology. 2015;33(2):93-112.

van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. The Lancet Neurology. 2007;6(5):421-430.

Selvitelli MF, Walker LM, Schomer DL, Chang BS. The relationship of interictal epileptiform discharges to clinical epilepsy severity: a study of routine EEGs and review of the literature. Journal of Clinical Neurophysiology. 2010;27(2):87-92.

Puspita JW, Soemarno G, Jaya AI, Soewono E. Interictal Epileptiform Discharges (IEDs) classification in EEG data of epilepsy patients. Journal of Physics: Conference Series. 2017;943:012030.

Jaseja H, Jaseja B. EEG spike versus EEG sharp wave: Differential clinical significance in epilepsy. Epilepsy & Behavior. 2012;25(1):137.

Gajic D, Djurovic Z, Di Gennaro S, Gustafsson F. Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomedical Engineering: Applications, Basis and Communications. 2014;26(02):1450021.

Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing. 2014;133:271-279.

Bandarabadi M, Teixeira CA, Rasekhi J, Dourado A. Epileptic seizure prediction using relative spectral power features. Clinical Neurophysiology. 2015;126(2):237-248.

Song JL, Hu W, Zhang R. Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine. Neurocomputing. 2016;175:383-391.

Mursalin M, Zhang Y, Chen Y, Chawla NV. Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing. 2017;241:204-214.

Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, et al. Automatic epileptic seizure detection in EEG signals using multi- domain feature extraction and nonlinear analysis. Entropy. 2017;19(6):222.

Ferrier CH, Aronica E, Leijten FS, Spliet WG, Van Huffelen AC, Van Rijen PC, Binnie CD. Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia. Epilepsia. 2006;47(9):1477-1486.

Ugorec I, Politsky J, Thompson S, Gruber M. EEG Characteristic of Low Grade and High Grade Glioma of the Central Nervous System.Northeast Regional Epilepsy Group. 2008;18:234.

Korinthenberg R, Scheuring B, Boos J, Niemeyer C. On the origin of EEG-slowing and encephalopathy during induction treatment of acute lymphoblastic leukemia. Medical and Pediatric Oncology. 2002;39(6):566-572.

Atlanta G. American Cancer Society: Cancer Facts and Figures. American Cancer Society. 2012;14:234.

Fischer-Williams M, Dike G. Brain Tumors and Other Space-Occupying Lesions in Electroencephalography: Basic Principles, Clinical Applications and Related Fields. 3rd edition. United States of America:Williams & Wilkins;1993.

Rowan AJ, Rudolf ND, Scott DF. EEG prediction of brain metastases: A controlled study with neuropathological confirmation. Journal of Neurology, Neurosurgery & Psychiatry. 1974;37(8):888-893.



DOI: https://doi.org/10.22146/bns.v19i3.73903

Article Metrics

Abstract views : 2136 | views : 6115

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Berkala NeuroSains

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.