Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 0 No 0.1 (3000): ONLINE FIRST

Analisis tekno-ekonomi proses pemisahan fraksi jenuh dan fraksi tak jenuh dari distilat asam lemak sawit

DOI
https://doi.org/10.22146/jrekpros.16251
Telah diserahkan
September 5, 2024
Diterbitkan
Desember 7, 2024

Abstrak

Distilat asam lemak sawit (DALS) dapat dimanfaatkan sebagai bahan baku dua jenis stabiliser termal polivinil klorida (PVC), yaitu timah organik dan campuran logam organik. Untuk menghasilkan kedua jenis stabiliser termal dengan kualitas yang baik, DALS perlu dipisahkan terlebih dahulu menjadi fraksi jenuh dan fraksi tak jenuh. Penelitian ini bertujuan untuk mengembangkan dan menganalisis tekno-ekonomi proses pemisahan fraksi jenuh dan tak jenuh DALS melalui kristalisasi pelarut dengan metanol. Kajian diawali pengembangan diagram alir proses termasuk pemilihan satuan operasi dan alat. Neraca massa dan energi dari proses yang dikembangkan selanjutnya diselesaikan. Investasi maupun biaya produksi selanjutnya dihitung dan dijadikan dasar dalam menentukan indikator ekonomi. Perhitungan dilakukan dengan perangkat lunak Aspen Plus dan Aspen Hysys. Kebutuhan utilitas didominasi oleh penguapan dan kondensasi pelarut. Semakin tinggi temperatur kristalisasi, semakin baik dari sisi lingkungan karena kebutuhan bahan bakar dan laju emisi CO2 semakin kecil. Akan tetapi, semakin tinggi temperatur kristalisasi, fraksi tak jenuh yang dihasilkan semakin kurang murni walaupun jumlahnya semakin besar. Pembangunan pabrik pemisahan pada kapasitas dan rentang temperatur kristalisasi yang dikaji diperkirakan memerlukan investasi 13,6-13,9 juta USD. Di antara peralatan yang dilibatkan, pemanas bakar dan kompresor refrijerasi memiliki kontribusi paling besar. Proses pemisahan pada temperatur -15oC dan 0oC ditemukan layak secara ekonomi, masing-masing dengan laju pengembalian internal (IRR) 36% dan 49%. Di lain pihak, proses pemisahan pada temperatur 10oC tidak layak secara ekonomi. Hasil kajian ini diharapkan dapat menjadi referensi dalam pengembangan proses skala komersial.

Referensi

  1. Amelia O, Sailah I, Kartika IA, Suparno O, Bindar Y. 2021. Ecofriendly alkyd resins based on vegetable oil: Review. Jurnal Rekayasa Proses. 15(1):1. doi:10.22146/jrekpros.64143.
  2. Anneken DJ, Both S, Christoph R, Fieg G, Steinberner U, Westfechtel A. 2006. Fatty Acids. In: Ullmann’s encyclopedia of industrial chemistry. Wiley. doi:10.1002/14356007.a10 _245.pub2.
  3. Berg JM, Stryer L, Tymoczko JL, Gatto GJ. 2015. Biochemistry. Macmillan Learning.
  4. Black SN. 2019. Crystallization in the pharmaceutical industry. Cambridge University Press. p. 380–413. doi:10.1017/ 9781139026949.013.
  5. Buchori L, Widayat W, Hadiyanto H, Satriadi H, Chasanah N, Kurniawan MR. 2022. Modification of magnetic nanoparticle lipase catalyst with impregnation of Activated Carbon Oxide (ACO) in biodiesel production from PFAD (Palm Fatty Acid Distillate). Bioresource Technology Reports. 19:101137. doi:10.1016/j.biteb.2022.101137.
  6. Cho HJ, Kim SH, Hong SW, Yeo YK. 2012. A single step noncatalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel. 93:373–380. doi:10.1016/j. fuel.2011.08.063.
  7. Couper JR, Penney WR, Fair JR, Walas SM. 2005. Chemical Process Equipment: Selection and Design. Gulf Professional Publishing.
  8. da Silva TLT, Martini S. 2024. Recent advances in lipid crystallization in the food industry. Annual Review of Food Science and Technology. 15(1):355–379. doi:10.1146/annu rev-food-072023-034403.
  9. Douvartzides SL, Charisiou ND, Papageridis KN, Goula MA. 2019. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies. 12(5):809. doi:10.3390/en12050809.
  10. Haraldsson G. 1984. Separation of saturated/unsaturated fatty acids. Journal of the American Oil Chemists’ Society. 61(2):219–222. doi:10.1007/bf02678772.
  11. Huong LM. 2007. Polyunsaturated fatty acid enrichment by complexation with silver ion. Journal of Chemistry. 45(6):757–762. https://vjs.ac.vn/index.php/vjchem/article/view/4826.
  12. Japir AAW, Salimon J, Derawi D, Yahaya BH, Bahadi M, AlShujaʼa S, Yusop MR. 2018a. A highly efficient separation and physicochemical characteristics of saturated fatty acids from crude palm oil fatty acids mixture using methanol crystallisation method. OCL. 25(2):A203. doi:10.1 051/ocl/2018003.
  13. Japir AAW, Salimon J, Derawi D, Yahaya BH, Jamil MSM, Yusop MR. 2018b. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology. Grasas y Aceites. 68(4):224. doi:10.3989/gya.0552171.
  14. Maeda K, Naito Y, Kuramochi H, Arafune K, Itoh K, Taguchi S, Yamamoto T. 2021. High-Pressure crystallization of binary unsaturated fatty acids in cylindrical cell. Journal of Crystal Growth. 576:126380. doi:10.1016/j.jcrysgro.2021.12 6380.
  15. Maeda K, Nomura Y, Fukui K, Hirota S. 1997. Separation of fatty acids by crystallization using two liquid phases. Korean Journal of Chemical Engineering. 14(3):175–178. doi:10.1007/bf02706091.
  16. Maeda K, Nomura Y, Guzman LA, Hirota S. 1998. Crystallization of fatty acids using binodal regions of two liquid phases. Chemical Engineering Science. 53(5):1103–1105. doi:10.1016/s0009-2509(97)00402-8.
  17. Maeda K, Nomura Y, Tai K, Ueno Y, Fukui K, Hirota S. 1999. New crystallization of fatty acids from aqueous ethanol solution combined with liquid−liquid extraction. Industrial & Engineering Chemistry Research. 38(6):2428– 2433. doi:10.1021/ie980715z.
  18. Magne FC, Mod RR, Skau EL. 1957. Purification of long‐chain saturated fatty acids by recrystallization of their molecular compounds with acetamide. Journal of the American Oil Chemists’ Society. 34(3):127–129. doi:10.1007/bf0264 0452.
  19. Martsinchyk K, Martsinchyk A, Łazor M, Shuhayeu P, Kupecki J, Niemczyk A, Błesznowski M, Milewski J. 2023. Feasibility study and techno-economic assessment of powerto-gas (P2G) technology based on solid oxide electrolysis (SOE). doi:10.2139/ssrn.4662720.
  20. Masduki, Sutijan, Budiman A. 2013. Kinetika reaksi esterifikasi palm fatty acid distilate (PFAD) menjadi biodiesel dengan katalis zeolit-zirkonia tersulfatasi. Jurnal Rekayasa Proses. 7(2):59. https://jurnal.ugm.ac.id/v3/jrekpros/article/view/10658.
  21. McCabe WL, Smith JC. 1976. Unit operations of chemical engineering. 3rd editio edition. New York: McGraw‐Hill. doi:10.1002/aic.690230337.
  22. Nasori AS, Wiguna B, Mufti A, Laksono H, Budiyanto B, Kusumasmarawati AD, Permana AW, Untoro M. 2023. Pemanfaatanpalmfattyaciddistillatesebagaisumberasamoleat: diversifikasi produk samping minyak kelapa sawit sebagai produk antara untuk industri hilir. Jurnal Teknologi Industri Pertanian:181–187. doi:10.24961/j.tek.ind.pert. 2023.33.2.181.
  23. Nur Azreena I, Asikin-Mijan N, Lau HLN, Hassan MA, Izham SM, Kennedy E, Stockenhuber M, Yan P, Taufiq-Yap YH. 2024. Hydro-processing of palm fatty acid distillate for diesel-like hydrocarbon fuel production using La-zeolite beta catalyst. Industrial Crops and Products. 218:118907. doi:10.1016/j.indcrop.2024.118907.
  24. Peters MS, Timmerhaus KD. 1991. Plant Design and Economics for Chemical Engineers. Chemical and petroleum engineering series. McGraw-Hill. doi:http://dx.doi.org/10.1080/00137918108956027.
  25. Puah CW, Choo YM, Ma AN, Chuah CH. 2007. The effect of physical refining on palm vitamin e (tocopherol, tocotrienol and tocomonoenol). American Journal of Applied Sciences. 4(6):374–377. doi:10.3844/ajassp.2007.374.377.
  26. Putrawan IDGA, Azharuddin A. 2024. Valorization of palm oil refining by-product for organotin mercaptide as a polyvinyl chloride thermal stabilizer: Synthesis, efficacy and comparison to mixed metal stearate. Journal of Bioresources and Bioproducts. 9(4):565–576. doi:10.1016/j.jobab. 2024.06.001.
  27. Putrawan IDGA, Azharuddin A, Komariah H, Egashira R. 2024a. Techno-economic analysis of cleaner alternatives for recovering ammonium chloride from wastewater generated by polyvinyl chloride thermal stabilizer plants. Cleaner Engineering and Technology. 21:100787. doi:10.1016/j.clet.2024.100787.
  28. Putrawan IDGA, Indarto A, Octavia Y. 2022. Thermal stabilization of polyvinyl chloride by calcium and zinc carboxylates derived from byproduct of palm oil refining. Heliyon. 8(8):e10079. doi:10.1016/j.heliyon.2022.e10079.
  29. Putrawan IDGA, Nento NAP, Azharuddin A, Indarto A, Adityawarman D. 2024b. Synthesis and thermal stabilizing effect on polyvinyl chloride of calcium/zinc carboxylate from palm fatty acid distillate: Effect of metal to fatty acid ratio. The 7th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, and Medical Devices. volume 3080. AIP Publishing. p. 50008. doi:10.1063/5.01 93942.
  30. Rolland JR, Riel RR. 1966. Separation of milk fat fractions by centrifugation. Journal of Dairy Science. 49(6):608–611. doi:10.3168/jds.s0022-0302(66)87916-x.
  31. Sembiring KC, Afandi A. 2022. Separation of saturated and unsaturated fatty acids from hydrolyzed palm oil. 2ND INTERNATIONAL CONFERENCE ON ENERGETICS, CIVIL ANDAGRICULTURAL ENGINEERING 2021 (ICECAE2021). volume 2686. AIP Publishing. p. 50015. doi:10.1063/5.0114 056.
  32. Teramoto M, Matsuyama H, Ohnishi N, Uwagawa S, Nakai K. 1994. Extraction of ethyl and methyl esters of polyunsaturated fatty acids with aqueous silver nitrate solutions. Industrial & Engineering Chemistry Research. 33(2):341– 345. doi:10.1021/ie00026a026.
  33. Towler G, Sinnott R. 2007. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Butterworth-Heinemann. doi:http://dx.doi.org/10.1002/aic.11633.
  34. Wanasundara, U N; Peterson R, Grove C. 2011. Process for separating saturated and unsaturated fatty acid. https://patents.google.com/patent/US8003813B2/en#:$sim$:text=Whenseparatingfattyacids%2Cthe,frac tionenrichedwithsaturatedfree.
  35. Wright AJ, McGauley SE, Narine SS, Willis WM, Lencki RW, Marangoni AG. 2000. Solvent effects on the crystallization behavior of milk fat fractions. Journal of Agricultural and Food Chemistry. 48(4):1033–1040. doi:10.1021/jf9908 244.