Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 18 No 1 (2024): Volume 18, Number 1, 2024

Batch filtration model of proanthocyanidins purification process from sorghum pericarp extract using polyethersulfone membrane

DOI
https://doi.org/10.22146/jrekpros.90292
Telah diserahkan
Mei 11, 2024
Diterbitkan
Juli 1, 2024

Abstrak

Sorghum is one type of plant rich in polyphenol chemicals, one of which is proanthocyanidin. The goal of this work was to construct a filtration equation model for the purification of proanthocyanidin compounds in sorghum pericarp extracts utilizing ultrafiltration methods at varied transmembrane pressures and molecular weight cut-off values on asymmetric polyethersulfone (PES) membranes. The pressure difference and size of MWCO were used to determine the rate of cake formation induced by fouling and concentration polarization. The model suggested in this work is based on a compressible filtration model that can represent the decrease in permeability values and the cake formation process produced by the compression of particles deposited on the surface of the membrane. The results reveal that the transmembrane pressure and MWCO considerably affect the performance of the proanthocyanidins separation process employing ultrafiltration membrane technology. The higher the transmembrane pressure, the higher the permeation flow rate. The effect of MWCO on permeability varies with the type of membrane and fluid employed. The larger the MWCO, the higher the permeability since the membrane pores are more significant and more accessible for the liquid to pass through. The high transmembrane pressure not only helps the feed flow swiftly through the membrane and overcomes the resistance but also encourages substance accumulation until the bulge component drops, resulting in a blocking mechanism in the surface or pore of the membrane. The batch filtration model suggested in this work exhibits a reasonably good fit, which can be seen from the projected data values using a model that tends to approach the experimental data values and may be employed as a model that depicts the cake-forming process on the membrane surface.

Referensi

  1. Abolore M, Jami MS, Muyibi SA. 2010. Tertiary treatment of biologically treated palm oil mill effluent ( POME ) using uf membrane system : Effect of MWCO and transmembrane pressure. 1(2). https://core.ac.uk/pdf/aaa300366 698.pdf.
  2. Afandy MA, Sediawan WB, Hidayat M, Susanti DY. 2023. Purification of proanthocyanidins from the extract of red sorghum pericarp using ultrafiltration membrane. AIP Conference Proceedings. Volume 2623. doi:https://doi.or g/10.1063/5.0129732.
  3. Alsvik IL, Hägg MB. 2013. Pressure retarded osmosis and forward osmosis membranes: Materials and methods. Polymers. 5(1):303–327. doi:10.3390/polym5010303.
  4. Ambarita AC, Mulyati S, Arahman N, Bilad MR, Shamsuddin N, Ismail NM. 2021. Improvement of properties and performances of polyethersulfone ultrafiltration membrane by blending with bio-based dragonbloodin resin. Polymers. 13(24). doi:10.3390/polym13244436.
  5. Anderson RC, Vodovnik M, Min BR, Pinchak WE, Krueger NA, Harvey RB, Nisbet DJ. 2012. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro. Folia Microbiologica. 57(4):253–258. doi:10.1007/s12223-012-0119-4.
  6. Ang WL, Mohammad AW. 2015. Mathematical modeling of membrane operations for water treatment. Elsevier Ltd. doi:10.1016/B978-1-78242-121-4.00012-5.
  7. Arribas P, Khayet M, García-Payo MC, Gil L. 2015. Novel and emerging membranes for water treatment by hydrostatic pressure and vapor pressure gradient membrane processes. Elsevier Ltd. doi:10.1016/B978-1-78242-121-4.00008-3.
  8. Asif MB, Hai FI, Jegatheesan V, Price WE, Nghiem LD, Yamamoto K. 2018. Applications of membrane bioreactors in biotechnology processes. Elsevier Inc. doi:10.1016/B9 78-0-12-813606-5.00008-7.
  9. Barros F, Awika J, Rooney LW. 2014. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. Journal of the Science of Food and Agriculture. 94(6):1212–1217. doi:10.1002/jsfa.6400.
  10. Blandin G, Verliefde AR, Comas J, Rodriguez-Roda I, Le-Clech P. 2016. Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: A critical review. Membranes. 6(3). doi:10.3390/ membranes6030037.
  11. Bolton G, LaCasse D, Kuriyel R. 2006. Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids. Journal of Membrane Science. 277(1-2):75–84. doi:10.1016/j. memsci.2004.12.053.
  12. Cai M, Lv Y, Luo S, Liu Y, Sun P. 2018. Fouling behavior of polyphenols during model juice ultrafiltration: effect of membrane properties. Food and Bioprocess Technology. 11(9):1787–1793. doi:10.1007/s11947-018-2110-9.
  13. Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R. 2018. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. International Journal of Molecular Sciences. 19(2). doi: 10.3390/ijms19020351.
  14. Chen X, Qi T, Zhang Y, Wang T, Qiu M, Cui Z, Fan Y. 2020. Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide. Journal of Membrane Science. 597:117631. doi:10.1016/j. memsci.2019.117631.
  15. Chhabra R, Basavaraj M. 2019. Coulson and Richardson’s chemical engineering. sixth edit edition. Volume 2A. Oxford: Butterworth-Heinemann. doi:https://doi.org/10.101 6/C2009-0-11215-1.
  16. Chiremba C, Rooney LW, Beta T. 2012. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. Journal of Agricultural and Food Chemistry. 60(18):4735–4742. doi:10.1021/jf300279t.
  17. Cifuentes-Cabezas M, Bohórquez-Zurita JL, Gil-Herrero S, Vincent-Vela MC, Mendoza-Roca JA, Álvarez-Blanco S. 2023. Deep study on fouling modelling of ultrafiltration membranes used for omw treatment: Comparison between semi-empirical models, response surface, and artificial neural networks. Food and Bioprocess Technology. (0123456789). doi:10.1007/s11947-023-03033-0.
  18. Conidi C, Cassano A, Caiazzo F, Drioli E. 2017. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. Journal of Food Engineering. 195:1–13. doi:10.1016/j.jfoo deng.2016.09.017.
  19. Conidi C, Drioli E, Cassano A. 2018. Membrane-based agrofood production processes for polyphenol separation, purification and concentration. Current Opinion in Food Science. 23:149–164. doi:10.1016/j.cofs.2017.10.009.
  20. Conidi C, Drioli E, Cassano A. 2020. Coupling ultrafiltrationbased processes to concentrate phenolic compounds from aqueous goji berry extracts. Molecules. 25(16). doi: 10.3390/molecules25163761.
  21. Córdova A, Astudillo C, Illanes A. 2018. Membrane technology for the purification of enzymatically produced oligosaccharides. doi:10.1016/B978-0-12-815056-6.00004-8.
  22. Czochanska Z, Foo LY, Newmann RH, Porter LJ. 1980. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. Journal of the chemical society. 1:2278–2286. doi:10.1039/P19800002278.
  23. Darunee Bhongsuwan, Tripob Bhongsuwan, Jamras Na-Suwan. 2002. Construction of a dead-end type microto R.O. membrane test cell and performance test with the laboratorymade and commercial membranes. Songklanakarin Journal of Science and Technology. 24(Suppl.):999–1007. http://rdo.psu.ac.th/sjstweb/journal/24-Suppl-1/26reverse-o smosis.pdf.
  24. Dillmann S, Kaushik SA, Stumme J, Ernst M. 2020. Characterization and performance of lbl-coated multibore membranes: Zeta potential, mwco, permeability and sulfate rejection. Membranes. 10(12):1–15. doi:10.3390/memb ranes10120412.
  25. Dykes L, Rooney LW. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World. 52(3):105–111. doi:10.1094/CFW-52-3-0105.
  26. Fan G, Su Z, Lin R, Lin X, Xu R, Chen W. 2016. Influence of membrane materials and operational modes on the performance of ultrafiltration modules for drinking water treatment. International Journal of Polymer Science. 2016. doi:10.1155/2016/6895235.
  27. Favre E. 2022. The Future of Membrane Separation Processes: A Prospective Analysis. Frontiers in Chemical Engineering. 4(May):1–5. doi:10.3389/fceng.2022.916054.
  28. Hagerman AE, Butler LG. 1980. Condensed tannin purification and characterization of tannin-associated proteins. Journal of Agricultural and Food Chemistry. 28(5):947– 952. doi:10.1021/jf60231a011.
  29. Hori K, Unno H. 2011. Integrated production and separation. second edi edition. Volume 2. Elsevier B.V. doi:10.1016/B9 78-0-08-088504-9.00116-1.
  30. Koonani H, Amirinejad M. 2019. Combined three mechanisms models for membrane fouling during microfiltration. Journal of Membrane Science and Research. 5(4):274–282. doi:10.22079/jmsr.2019.95781.1224.
  31. Lee SM, Lin JJ, Liao CY, Cheng HL, Sun Pan B. 2014. Phenolic acids identified in sorghum distillery residue demonstrated Antioxidative and anti-cold-stress properties in cultured tilapia, oreochromis mossambicus. Journal of Agricultural and Food Chemistry. 62(20):4618–4624. doi: 10.1021/jf500876k.
  32. Liu L, Luo XB, Ding L, Luo SL. 2018. Application of nanotechnology in the removal of heavy metal from water. Elsevier Inc. doi:10.1016/B978-0-12-814837-2.00004-4.
  33. Lutz H. 2010. Ultrafiltration: Fundamentals and engineering. Comprehensive Membrane Science and Engineering. 2:115–139. doi:10.1016/B978-0-08-093250-7.00037-2.
  34. Madrona GS, Terra NM, Filho UC, Magalhães FdS, Cardoso VL, Reis MHM. 2019. Purification of phenolic compounds from genipap (Genipa americana L.) extract by the ultrasound assisted ultrafiltration process. Acta Scientiarum Technology. 41. doi:10.4025/actascitechnol.v41i1.35571.
  35. Malliga P, Bela RB, Shanmugapriya N. 2019. Conversion of textile effluent wastewater into fertilizer using marine cyanobacteria along with different agricultural waste. 1971. Elsevier Inc. doi:10.1016/B978-0-12-817951-2.00005-5.
  36. Massey AR, Reddivari L, Vanamala J. 2014. The dermal layer of sweet sorghum (sorghum bicolor) stalk, a byproduct of biofuel production and source of unique 3-deoxyanthocyanidins, has more antiproliferative and proapoptotic activity than the pith in p53 Variants of HCT116 and colon cancer stem cel. Journal of Agricultural and Food Chemistry. 62(14):3150–3159. doi:10.1021/jf4054 15u.
  37. Md Yunos KF, Mazlan NA, Naim MNM, Baharuddin AS, Hassan AR. 2019. Ultrafiltration of palm oil mill effluent: Effects of operational pressure and stirring speed on performance and membranes fouling. Environmental Engineering Research. 24(2):263–270. doi:10.4491/EER.2018.1 75.
  38. Mejia JA, Ricci A, Figueiredo AS, Versari A, Cassano A, de Pinho MN, Parpinello GP. 2022. Membrane-based Operations for the Fractionation of Polyphenols and Polysaccharides From Winery Sludges. Food and Bioprocess Technology. 15(4):933–948. doi:10.1007/s11947-022-02795-3.
  39. Mora J, Pott DM, Osorio S, Vallarino JG. 2022. Regulation of plant tannin synthesis in crop species. Frontiers in Genetics. 13(May):1–18. doi:10.3389/fgene.2022.870976.
  40. Nawaz H, Shi J, Mittal GS, Kakuda Y. 2006. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Separation and Purification Technology. 48(2):176–181. doi:10.1016/j.seppur.2005.07.006.
  41. Pabby AK, Rizvi SSH, Sastre AM, Press CRC. 2009. Handbook of membrane separations chemical, pharmaceutical, food, and biotechnological applications. doi:https://doi.org/10.1201/9781420009484.
  42. Pinto PR, Mota IF, Pereira CM, Ribeiro AM, Loureiro JM, Rodrigues AE. 2017. Separation and recovery of polyphenols and carbohydrates from Eucalyptus bark extract by ultrafiltration/diafiltration and adsorption processes. Separation and Purification Technology. 183:96–105. doi:10.101 6/j.seppur.2017.04.003.
  43. Purwayantie S, Sediawan WB. 2020. Membrane separation for recovery of umami compounds: Review of current and recently developed membranes. Journal of Environmental Treatment Techniques. 8(1):390–402. https://ww w.dormaj.com.
  44. Rahimpour A, Madaeni SS, Mehdipour-Ataei S. 2008. Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. Journal of Membrane Science. 311(1-2):349–359. doi:10.1016/j.memsci.2007.12.038.
  45. Rai P, Majumdar GC, Sharma G, Das Gupta S, De S. 2006. Effect of various cutoff membranes on permeate flux and quality during filtration of Mosambi (Citrus sinensis (L.) Osbeck) juice. Food and Bioproducts Processing. 84(3 C):213–219. doi:10.1205/fbp.05181.
  46. Rajendran SR, Mason B, Doucette AA. 2021. Review of membrane separation models and technologies: processing complex food-based biomolecular fractions. Food and Bioprocess Technology. 14(3):415–428. doi:10.1007/s119 47-020-02559-x.
  47. Ramli R, Bolong N. 2016. Effects of pressure and temperature on ultrafiltration hollow fiber membrane in mobile water treatment system. Journal of Engineering Science and Technology. 11(7):1031–1040. https://jestec.taylors.edu.m y/Vol11issue7July2016/11_7_9.pdf.
  48. Ratnavathi CV, Tonapi VA. 2021. Functional characteristics and nutraceuticals of grain sorghum. Sorghum in the 21st Century: Food Fodder Feed Fuel for a Rapidly Changing World:839–858. doi:10.1007/978-981-15-824 9-3_33.
  49. Rauf A, Imran M, Abu-Izneid T, Iahtisham-Ul-Haq, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. 2019. Proanthocyanidins: A comprehensive review. Biomedicine and Pharmacotherapy. 116(May). doi:10.101 6/j.biopha.2019.108999.
  50. Raza W, Lee J, Raza N, Luo Y, Kim KH, Yang J. 2019. Removal of phenolic compounds from industrial waste water based on membrane-based technologies. Journal of Industrial and Engineering Chemistry. 71:1–18. doi:10.1016/j.jiec.201 8.11.024.
  51. Rodrigues RP, Gando-Ferreira LM, Quina MJ. 2020. Micellar enhanced ultrafiltration for the valorization of phenolic compounds and polysaccharides from winery wastewaters. Journal of Water Process Engineering. 38(May):101565. doi:10.1016/j.jwpe.2020.101565.
  52. Sadr SM, Saroj DP. 2015. Membrane technologies for municipal wastewater treatment. Elsevier Ltd. doi:10.1016/B978-1-78242-121-4.00014-9.
  53. Saleh TA, Gupta VK. 2016. An overview of membrane science and technology. Nanomaterial and Polymer Membranes:1–23. doi:10.1016/b978-0-12-804703-3.0 0001-2.
  54. Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. 2015. Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. Food Reviews International. 31(4):401–437. doi:10.1080/ 87559129.2015.1022832.
  55. Susanti DY, Sediawan WB, Fahrurrozi M, Hidayat M, Putri AY. 2021. Encapsulation of red sorghum extract rich in proanthocyanidins: Process formulation and mechanistic model of foam-mat drying at various temperature. Chemical Engineering and Processing Process Intensification. 164(March):108375. doi:10.1016/j.cep.2021.10837 5.
  56. Svensson L, Sekwati-Monang B, Lutz DL, Schieber R, Gänzle MG. 2010. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry. 58(16):9214–9220. doi:10.1021/jf101504v.
  57. Syahputri GA, Santoso U, Supriyanto. 2021. Ultrafiltration for the separation of polyphenol oxidase and peroxidase and its effect on physicochemical and antioxidant properties of coconut (Cocos nucifera l.) water. Food Research. 5(4):163–172. doi:10.26656/fr.2017.5(4).013.
  58. Vela MCV, Blanco SÁ, García JL, Rodríguez EB. 2008. Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology. 62(3):489–498. doi:10.1016/j.seppur.2008.02.028.
  59. Víctor-Ortega MD, Martins RC, Gando-Ferreira LM, QuintaFerreira RM. 2017. Recovery of phenolic compounds from wastewaters through micellar enhanced ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 531(May):18–24. doi:10.1016/j.colsurfa.2017. 07.080.
  60. Wang Z, Wang H, Liu J, Zhang Y. 2014. Preparation and antifouling property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via RATRP method. Desalination. 344:313–320. doi:10.1016/j.desal.2014.03.040.
  61. Wen X, He C, Hai Y, Ma R, Sun J, Yang X, Qi Y, Wei H, Chen J. 2022. Fabrication of an antifouling PES ultrafiltration membrane: Via blending SPSF. RSC Advances. 12(3):1460–1470. doi:10.1039/d1ra06354e.
  62. Wu G, Bornman JF, Bennett SJ, Clarke MW, Fang Z, Johnson SK. 2017. Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. Journal of Cereal Science. 77:17–23. doi:10.1016/j.jcs.2017.07.014.
  63. Wu Y, Li X, Xiang W, Zhu C, Lin Z, Wu Y, Li J, Pandravada S, Ridder DD, Bai G, Wang ML, Trick HN, Beane SR, Tuinstra MR, Tesso TT, Yu J. 2012. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proceedings of the National Academy of Sciences of the United States of America. 109(26):10281–10286. doi: 10.1073/pnas.1201700109.
  64. Zheng L, Su Y, Wang L, Jiang Z. 2009. Adsorption and recovery of methylene blue from aqueous solution through ultrafiltration technique. Separation and Purification Technology. 68(2):244–249. doi:10.1016/j.seppur.2009.05.010.
  65. Zhu Z, Liu Y, Guan Q, He J, Liu G, Li S, Ding L, Jaffrin MY. 2015. Purification of purple sweet potato extract by dead-end filtration and investigation of membrane fouling mechanism. Food and Bioprocess Technology. 8(8):1680–1689. doi:10.1007/s11947-015-1532-x.