Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 0 No 0.1 (3000): ONLINE FIRST

Sifat fisik dan analisis GC/MS minyak pirolisis ban bekas dan sampah plastik (HDPE/high-density polyethylene dan PP/polypropylene)

DOI
https://doi.org/10.22146/jrekpros.12342
Telah diserahkan
Pebruari 24, 2024
Diterbitkan
Juni 7, 2024

Abstrak

Pirolisis merupakan teknologi inovatif yang dapat mengubah berbagai jenis limbah menjadi produk yang bernilai tinggi. Minyak Pirolisis (MP) yang dihasilkan dapat digunakan sebagai bahan bakar alternatif. Penelitian ini bertujuan untuk mengetahui sifat fisik dan kimia MP ban bekas dan sampah plastik jenis HDPE dan PP yang selanjutnya dibandingkan dengan karakteristik bahan bakar komersial. Pirolisis dilakukan pada suhu 350 °C dalam waktu 4 jam. Hasil analisis menunjukkan sifat fisik MP HDPE C mirip dengan bensin dengan densitas 0,807 g/mL, viskositas dinamik 0,623 cP, dan viskositas kinematik 0,771 cSt. Tetapi, nilai kalornya masih sangat rendah dibandingkan dengan bensin. MP PP C memiliki nilai kalor hampir sebanding dengan bahan bakar komersial, yaitu sebesar 38,237 MJ/kg. Sedangkan pada MP Ban, sifat fisik dan nilai kalornya tidak memenuhi karakteristik bahan bakar. Analisis GC/MS menunjukkan Ban C1 memiliki kandungan senyawa olefin dan aromatik yang tinggi. Disisi lain, MP HDPE C memiliki kandungan senyawa parafin dan olefin yang tinggi, namun tidak mengandung senyawa aromatik. MP ban bekas dan sampah plastik berpotensi untuk digunakan sebagai bahan bakar. Kondisi pirolisis sangat mempengaruhi kualitas MP. Oleh karena itu, diperlukan optimalisasi kondisi pirolisis supaya dihasilkan MP dengan karakteristik yang mirip dengan bahan bakar.   

Referensi

  1. Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for fuel oils. Technical report.
  2. Ahadiat N, Semar D. 2022. The influence of olefin content in gasoline against deposit build up on intake valve of motor bike engine. Scientific Contributions Oil and Gas. 33(1):52–58. doi:10.29017/scog.33.1.948.
  3. Ahmad I, Khan MI, Khan H, Ishaq M, Tariq R, Gul K, Ahmad W. 2014. Pyrolysis study of polypropylene and polyethylene into premium oil products. International Journal of Green Energy. 12(7):663–671. doi:10.1080/15435075.2014. 880146.
  4. Bharath G, Hai A, Rambabu K, Banat F, Jayaraman R, Taher H, Bastidas-Oyanedel JR, Ashraf MT, Schmidt JE. 2020. Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass and Bioenergy. 135:105523. doi:10.1016/j.biombioe.2020. 105523.
  5. Dai L, Zhou N, Lv Y, Cheng Y, Wang Y, Liu Y, Cobb K, Chen P, Lei H, Ruan R. 2022. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science. 93:101021. doi:10.1016/j.pecs.2 022.101021.
  6. Damayanti Z, Sudarti S, Yushardi Y. 2023. Analisis karakteristik fuel pirolisis sampah plastik berdasarkan jenis plastik yang digunakan: Review. Jurnal Inovasi Teknik Kimia. 8(1):26. doi:10.31942/inteka.v18i1.8092.
  7. Dusling K. Properties of common liquids at room temperature and pressure. https://kdusling.github.io/teaching/Applied-Fluids/PropertiesOfCommonLiquids.html.
  8. Energy Education. Kerosene. https://energyeducation.ca/encyclopedia/Kerosene.
  9. Environmental Protection Agency (EPA). 2021. Sources of greenhouse gas emissions. Technical report.
  10. Figueiredo MK, Romeiro GA, Damasceno RN. 2009. Low temperature conversion (LTC) of castor seeds—A study of the oil fraction (pyrolysis oil). Journal of Analytical and Applied Pyrolysis. 86(1):53–57. doi:10.1016/j.jaap.2009.04.0 06.
  11. Fulgencio-Medrano L, García-Fernández S, Asueta A, LopezUrionabarrenechea A, Perez-Martinez BB, Arandes JM. 2022. Oil production by pyrolysis of real plastic waste. Polymers. 14(3):553. doi:10.3390/polym14030553.
  12. Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian F, Lee WJ, Wu H, Li CZ. 2008. Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Industrial & Engineering Chemistry Research. 47(6):1846–1854. doi:10.1021/ie071497p.
  13. Hartman J. 2015. Kinematic and dynamic viscosity of diesel, biodiesel, and JP-900 compared to other non-standard fluids with a demonstration of viscosity changes at varying temperatures. [Undergraduate report]: Pennsylvania State University, Philadelphia.
  14. Hussain N. 2022. Properties of gasoline fuel.
  15. Karmaker AK, Rahman MM, Hossain MA, Ahmed MR. 2020. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. Journal of Cleaner Production. 244:118645. doi:10.1016/j. jclepro.2019.118645.
  16. Kumar M, Tung Chong C, Karmakar S. 2022. Comparative assessment of combustion characteristics of limonene, Jet A-1 and blends in a swirl-stabilized combustor under the influence of pre-heated swirling air. Fuel. 316:123350. doi:10.1016/j.fuel.2022.123350.
  17. Maqsood T, Dai J, Zhang Y, Guang M, Li B. 2021. Pyrolysis of plastic species: A review of resources and products. Journal of Analytical and Applied Pyrolysis. 159:105295. doi: 10.1016/j.jaap.2021.105295.
  18. Martyr AJ, Rogers DR. 2021. Engine exhaust emissions. doi: 10.1016/b978-0-12-821226-4.00017-6.
  19. Mishra RK, Mohanty K. 2022. Pyrolysis of low-value waste sawdust over low-cost catalysts: physicochemical characterization of pyrolytic oil and value-added biochar. Biofuel Research Journal. 9(4):1736–1749. doi:10.18331/brj20 22.9.4.4.
  20. Olalo JA. 2021. Pyrolytic oil yield from waste plastic in quezon city, philippines: optimization using response surface methodology. International Journal of Renewable Energy Development. 11(1):325–332. doi:10.14710/ijred.2022.41457.
  21. Pakdel H, Pantea DM, Roy C. 2001. Production of dl-limonene by vacuum pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis. 57(1):91–107. doi:10.1016/s0165-2 370(00)00136-4.
  22. Papari S, Bamdad H, Berruti F. 2021. Pyrolytic conversion of plasticwastetovalue-addedproductsandfuels: A review. Materials (Basel, Switzerland). 14(10):2586. doi:10.3390/ ma14102586.
  23. Petrochemical Chemical & Energy. 2019. An introduction to olefins. https://www.petro-online.com/news/fuel-for-thought/13/breaking-news/an-introduction-to-olefins/48730.
  24. Ra Y, Reitz RD, McFarlane J, Daw CS. 2008. Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels. SAE International Journal of Fuels and Lubricants. 1(1):703–718. doi:10.4271/2008-01-1379.
  25. Rivera JdD, Davies GM, Jahn W. 2012. Flammability and the heat of combustion of natural fuels: A review. Combustion Science and Technology. 184(2):224–242. doi:10.108 0/00102202.2011.630332.
  26. Sharma A, Khatri D, Goyal R, Agrawal A, Mishra V, Hansdah D. 2021. Environmentally friendly fuel obtained from pyrolysis of waste tyres. doi:10.1007/978-981-16-1256-5_11.
  27. Shen XR, Geng CX, Lv BQ, Xu W, Xu Y, Zhao HZ. 2021. Tire pyrolysis wastewater treatment by a combined process of coagulation detoxification and biodegradation. Environmental science and ecotechnology. 8:100129. doi:10.1016/ j.ese.2021.100129.
  28. Subekti S, Sasmito A, Rahman B. 2023. Pemanfaatan sampah di tempat pemrosesan akhir (tpa) jatibarang sebagai sumber energi baru terbarukan. Merdeka Indonesia Internasional (MIJI). 3:54–63. https://merdekaindonesia.com/index.php/MerdekaIndonesiaJournalInternatiurn:nbn:de:00001MIJI.v3i1.69.
  29. Thahir R, Irwan M, Alwathan A, Ramli R. 2021. Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Results in Engineering. 11:100231. doi:10.1016/j.rine ng.2021.100231.
  30. The Engineering ToolBox. 2003. Liquids – kinematic viscosities. https://www.engineeringtoolbox.com/absolute-viscosity-liquids-d_1259.html.
  31. The Engineering ToolBox. 2008. Liquids – dynamic viscosities. https://www.engineeringtoolbox.com/kinematic-viscosity-d_397.htm.
  32. The Engineering ToolBox. 2023. Gasoline density, specific heat, viscosity and thermal conductivity vs. Temperature. https://www.engineeringtoolbox.com/gasoline-density-specific-heat-dynamic-kinematic-viscosity-thermal-conductivity-vs-temperature-d_2224.html.
  33. Troyer D. 2002. Kinematic viscosity explained. https://www.machinerylubrication.com/Read/294/absolute-kinematic-viscosity.
  34. Umeki ER, de Oliveira CF, Torres RB, dos Santos RG. 2016. Physico-chemistry properties of fuel blends composed of diesel and tire pyrolysis oil. Fuel. 185:236–242. doi: 10.1016/j.fuel.2016.07.092.
  35. Vempatapu BP, Tripathi D, Kumar J, Kanaujia PK. 2019. Determination of kerosene as an adulterant in diesel through chromatography and high-resolution mass spectrometry. SN Applied Sciences. 1(6). doi:10.1007/s42452-019-0 637-7.
  36. Wa̧ drzyk M, Janus R, Rza̧ dzik B, Lewandowski M, Budzyń S. 2020. Pyrolysis oil from scrap tires as a source of fuel components: Manufacturing, fractionation, and characterization. Energy & Fuels. 34(5):5917–5928. doi:10.1021/acs.energyfuels.0c00265.
  37. Wang G, Dai Y, Yang H, Xiong Q, Wang K, Zhou J, Li Y, Wang S. 2020. A review of recent advances in biomass pyrolysis. Energy & Fuels. 34(12):15557–15578. doi:10.1021/acs.ener gyfuels.0c03107.