Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 11 No 2 (2017): Volume 11, Number 2, 2017

Evaluasi nilai difusivitas ion kalsium dan magnesium pada proses low salinity waterflood di batuan Berea

DOI
https://doi.org/10.22146/jrekpros.28890
Telah diserahkan
November 16, 2023
Diterbitkan
Desember 31, 2017

Abstrak

Penelitian mengenai metode low salinity waterflood (LSW) dalam beberapa tahun terakhir mengalami perkembangan yang cukup pesat. Salah satu aspek esensial dalam metode tersebut adalah respon perubahan konsentrasi ion divalent dalam ruang pori reservoir. Penelitan ini bertujuan mencari konstanta difusivitas ion kalsium dan magnesium pada batuan Berea sandstone. Konstanta difusivitas dihitung menggunakan persamaan konservasi massa dan ditinjau secara difusi yang divalidasi oleh atomic absorption spectroscopy (AAS). Penelitian dilakukan pada 2 batuan Berea dengan porositas masing-masing: 661 mD dan 550 mD. Air formasi dibuat secara sintetik sesuai data lapangan "LN". Eksperimen difusivitas Ca2+ dilakukan dengan pengenceran hingga 79% dari konsentrasi awal. Sedangkan eksperimen Mg2+ dilakukan dengan pengenceran hingga 95% dari konsentrasi awal. Sementara itu ion lain diatur tetap sesuai konsentrasi awal. Dari hasil percobaan didapat konstanta difusivitas Ca2+ sebesar 0,0620 cm2/menit dan Mg2+ sebesar 0,2667 cm2/menit.

Referensi

  1. Ashraf, A., Hadia, N., Torsaeter, O., and Tweheyo, M. T., 2010, Laboratory investigation of low salinity waterflooding as secondary recovery process: effect of wettability, In SPE Oil and Gas India Conference and Exhibition, Society of Petroleum Engineers.
  2. Bird R. B., Stewart W. E., and Lightfoot E. N., 1960, Transport Phenomena, John Wiley and Sons, New York, USA.
  3. Berg, S., Cense, A. W., Jansen, E., and Bakker, K., 2010, Direct experimental evidence of wettability modification by low salinity, Petrophysics, 51(05).
  4. Cissokho, M., Bertin, H., Boussour, S., Cordier, P., and Hamon, G., 2010, Low salinity oil recovery on clayey sandstone: experimental study, Petrophysics, 51(05).
  5. Etemadi, A., Khodapanah, E., and TabatabaeiNejad, S. A., 2017, Modelling low-salinity waterflooding: Effect of divalent cations and capillary pressure, Journal of Petroleum Science and Engineering, 149, 1-8.
  6. Khorsandi, S., Qiao, C., and Johns, R. T., 2016, Displacement efficiency for low-salinity polymer flooding including wettability alteration, SPE Journal.
  7. Lager, A., Webb, K. J., Black, C. J. J., Singleton, M., and Sorbie, K. S., 2008, Low salinity oil recovery-an experimental investigation, Petrophysics, 49 (01).
  8. Ligthelm, D. J., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., and van der Linde, H., 2009, Novel waterflooding strategy by manipulation of injection brine composition, In EUROPEC/EAGE Conference and Exhibition, Society of Petroleum Engineers.
  9. Omekeh, A. V., Evje, S., and Friis, H. A., 2013, Modeling of low salinity effects in sandstone oil rocks, Int. J. Numer. Anal. Model., Ser. B, 4(2), 95-128.
  10. Sahimi, M., 2011, Flow and Transport in Porous Media and Fractured Rock: from Classical Methods to Modern Approaches, John Wiley & Sons, New York, USA
  11. Wu, Y. S. and Bai, B., 2009, Efficient simulation for low salinity waterflooding in porous and fractured reservoirs, In SPE Reservoir Simulation Symposium, Society of Petroleum Engineers.
  12. Zhang, Y. and Morrow, N. R., 2006, Comparison of secondary and tertiary recovery with change in injection brine composition for crude-oil/sandstone combinations, In SPE/DOE Symposium on Improved Oil Recovery, Society of Petroleum Engineers