Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 0 No 0.1 (3000): ONLINE FIRST

Pengaruh kalsinasi terhadap karakteristik mesoporous nanosilica (MSN) dari sludge geothermal dan performanya dalam sistem drug loading kurkumin

DOI
https://doi.org/10.22146/jrekpros.20154
Submitted
March 4, 2025
Published
April 30, 2025

Abstract

This study was conducted to study the effect of calcination on the characteristics of mesoporous nanosilica (MSN) from sludge geothermal waste and its performance in drug loading curcumin. The preparation of MSN was carried out using the sol-gel method using polyvinylpyrrolidone (PVP) surfactant. The removal of surfactants from MSN was processed using the calcination method, where the muffle furnace was adjusted at a temperature of 600oC for 7 hours. The formed MSN samples were then characterized using XRF, XRD, FTIR, and BET instruments. Meanwhile, the adsorption capacity of MSN to curcumin before and after calcination was measured using a 600 ppm curcumin solution. This drug loading process lasted for 6 hours at room temperature. The study's results showed that MSN's composition and crystallinity structure did not change significantly due to the calcination process. However, the functional groups of MSN changed after calcination. The pore size of MSN after calcination also decreased from 4.31 (before calcination) to 4.02 nm. This change in MSN characteristics also affects the performance of curcumin drug loading. This can be seen based on the efficiency of curcumin adsorption, where calcined MSN can adsorb curcumin by 32.92%, while for uncalcined MSN, the adsorption efficiency is 25.64%. Based on the results of this study, the calcination process has a positive effect on the drug loading ability of MSNs.

References

  1. Abernethy DR, DeStefano AJ, Cecil TL, Zaidi K, Williams RL. 2010. Metal impurities in food and drugs. Pharmaceutical Research. 27(5):750–755. doi:10.1007/s11095-010-0 080-3.
  2. Adiatama AR, Susanti RF, Astuti W, Petrus HTBM, Wanta KC. 2022. Synthesis and characteristic of nanosilica from geothermal sludge: Effect of surfactant. Metalurgi. 37(2):73. doi:10.14203/metalurgi.v37i2.637.
  3. Barczak M. 2018. Template removal from mesoporous silicas using different methods as a tool for adjusting their properties. New Journal of Chemistry. 42(6):4182–4191. doi:10.1039/c7nj04642a.
  4. BenmoreCJ,BenmoreSR,WilkeSK,MenonV,ByrnSR,Weber JKR. 2023. X-ray diffraction of water in polyvinylpyrrolidone. Molecular Pharmaceutics. 20(7):3645–3652. doi: 10.1021/acs.molpharmaceut.3c00265.
  5. Ding P, Pacek AW. 2008. De‐agglomeration of silica nanoparticles in the presence of surfactants. Journal of Dispersion Science and Technology. 29(4):593–599. doi:10.108 0/01932690701729302.
  6. Dong JH, Ma Y, Li R, Zhang WT, Zhang MQ, Meng FN, Ding K, Jiang HT, Gong YK. 2021. Smart MSN-drug-delivery system for tumor cell targeting and tumor microenvironment release. ACS Applied Materials & Interfaces. 13(36):42522–42532. doi:10.1021/acsami.1c14189.
  7. Hu Y, Bai S, Wu X, Tan S, He Y. 2021. Biodegradability of mesoporous silica nanoparticles. Ceramics International. 47(22):31031–31041. doi:10.1016/j.ceramint.2021.08.129.
  8. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. 2017. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Materials Science and Engineering: C. 77:1316–1326. doi:10.1016/j.msec.2017.03.226.
  9. Imoisili PE, Jen TC. 2024. Synthesis and characterization of amorphous nano silica from South African coal fly ash. Materials Today: Proceedings. 105:21–26. doi:10.1016/j. matpr.2023.06.077.
  10. Jenie SNA, Ghaisani A, Ningrum YP, Kristiani A, Aulia F, Petrus HTMB. 2018. Preparation of silica nanoparticles from geothermal sludge via sol-gel method. p. 20008. doi:10.1063/1.5064968.
  11. Kamarudin NHN. 2016. Microwave-assisted synthesis of mesoporous silica nanoparticles as a drug delivery vehicle. Malaysian Journal of Analytical Science. 20(6):1382–1389. doi:10.17576/mjas-2016-2006-17.
  12. Karimi M, Mirshekari H, Aliakbari M, Sahandi-Zangabad P, Hamblin MR. 2016. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnology Reviews. 5(2). doi:10.1515/ntrev-2015-0057.
  13. Kaur K, Al-Khazaleh AK, Bhuyan DJ, Li F, Li CG. 2024. A Review of recent curcumin analogues and their antioxidant, anti-inflammatory, and anticancer activities. Antioxidants. 13(9):1092. doi:10.3390/antiox13091092.
  14. LimZH,AlSalimHS,RidzuanN,NgueleR,SasakiK.2018. Effect of surfactants and their blend with silica nanoparticles on wax deposition in a Malaysian crude oil. Petroleum Science. 15(3):577–590. doi:10.1007/s12182-018-0241-2.
  15. Lopresti AL. 2018. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Advances in Nutrition. 9(1):41–50. doi:10.1093/advances/nmx011.
  16. Miao Y, Feng Y, Bai J, Liu Z, Zhao X. 2021. Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. Journal of Colloid and Interface Science. 592:227–236. doi:10.1016/j.jcis.2021.02.054.
  17. Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Matsuo K, Arimori A, Isobe M, Tochigi S, Kondoh S, Hirai T, Akase T, Yamashita T, Yamashita K, Yoshida T, Nagano K, Abe Y, Yoshioka Y, Kamada H, Imazawa T, Itoh N, Nakagawa S, Mayumi T, Tsunoda Si, Tsutsumi Y. 2011. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials. 32(11):2713–2724. doi:10.1016/j.biomaterials.2010.12.042.
  18. Purnawira B, Purwaningsih H, Ervianto Y, Pratiwi VM, Susanti D, Rochiem R, Purniawan A. 2019. Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conference Series: Materials Science and Engineering. 541(1):12018. doi:10.1088/1757-899x/541/1/012018.
  19. Rakhmasari KD, Perdana I, Prasetya A, Pidhatika B. 2019. Nanosilika dari prekursor silika geotermal: Pengaruh konsentrasi surfaktan dan dekomposisi termal pasca sintesis. Prosiding Seminar Nasional Teknik Kimia “Kejuangan”.
  20. Rizzi F, Castaldo R, Latronico T, Lasala P, Gentile G, Lavorgna M, Striccoli M, Agostiano A, Comparelli R, Depalo N, Curri ML, Fanizza E. 2021. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insights on the size and porosity control mechanisms. Molecules. 26(14):4247. doi:10.3390/molecules261 44247.
  21. Rosenholm JM, Sahlgren C, Lindén M. 2010. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale. 2(10):1870. doi:10.1039/c0nr00156b.
  22. Slowing I, Viveroescoto J, Wu C, Lin V. 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews. 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012.
  23. Suresh K, Nangia A. 2018. Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm. 20(24):3277–3296. doi:10.1039/c8ce0046 9b.
  24. Wahyudi B, Muljani S. 2019. Pupuk multinutrient berbasis silika dari limbah geothermal sludge dengan proses asidifikasi. Jurnal Teknik Kimia. 14(1). doi:10.33005/jurnal_t ekkim.v14i1.1651.
  25. Wanta KC, Lim S, Susanti RF, Gemilar GP, Astuti W, Petrus HTBM. 2021. Effect of surfactant type on synthesis and characteristics of nanonickel hydroxide. Jurnal Rekayasa Proses. 15(2):217. doi:10.22146/jrekpros.69723.
  26. Zarei V, Yavari H, Nasiri A, Mirzaasadi M, Davarpanah A. 2023. Implementation of amorphous mesoporous silica nanoparticles to formulate a novel water-based drilling fluid. Arabian Journal of Chemistry. 16(8):104818. doi:10.1016/j.arabjc.2023.104818.