Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 1 (2024): Volume 18, Number 1, 2024

An extensive analysis and examination of techniques to enhance the efficiency of water extraction from wastewater generated during the recycling of nickel manganese cobalt (NMC) batteries using reverse osmosis membrane technology.

DOI
https://doi.org/10.22146/jrekpros.12711
Submitted
March 26, 2024
Published
July 1, 2024

Abstract

Industrial water consumption will account for 22% of global water demand by 2030. Industry water conservation is encouraged by rapid corporate growth. Industrial resource usage and pollutant emissions can be reduced via cleaner production methods. Recycling is essential to greener production and the circular economy. Recycling is crucial to achieving the 2030 Sustainable Development Goals. The electric vehicle (EV) sector has propelled battery business growth in recent years, especially in Indonesia. The electric vehicle (EV) sector will benefit from using Nickel Manganese Cobalt (NMC) batteries. The study will use reverse osmosis (RO) membrane filtration to recover water from recovered NMC battery effluent. The experiment will investigate feed solution concentrations, pressures (8, 10, and 12 bar), and temperatures (30, 40, and 50°C). Two factors—permeate flux and metal ion rejection—determine reverse osmosis membrane efficiency. Li and Na metal rejection was maximum at 30°C and 12 bar, with 94-96% and 90-93% rejection rates, respectively. Under certain operating conditions, reverse osmosis membrane technology significantly reduced sodium (Na) concentration in NMC battery recycling effluent. Thus, wastewater is no longer saline. Reverse osmosis water can be reused for cooling due to its Li and Na concentrations.

References

  1. Ahuchaogu AA, Chukwu OJ, Obike AI, Igara CE, Nnorom IC, Echeme JBO. 2018. Reverse Osmosis Technology, its Applications and Nano-Enabled Membrane. International Journal of Advanced Research in Chemical Science. 5(2). doi:10.20431/2349-0403.0502005.
  2. Borhan A, Mat Johari MM. 2014. Removal of Monoethanolamine from Wastewater by Composite Reverse Osmosis Membrane. Jurnal Teknologi. 68(5). doi:10.11113/jt.v68.3031.
  3. de Oliveira Neto GC, Cesar da Silva P, Tucci HNP, Amorim M. 2021. Reuse of water and materials as a cleaner production practice in the textile industry contributing to blue economy. Journal of Cleaner Production. 305:127075. doi: 10.1016/j.jclepro.2021.127075.
  4. Dévora-Isiordia GE, Cásares-De la Torre CA, MoralesMendívil DP, Montoya-Pizeno R, Velázquez-Limón N, Aguilar-Jiménez JA, Ríos-Arriola J. 2023. Evaluation of Concentration Polarization Due to the Effect of Feed Water Temperature Change on Reverse Osmosis Membranes. Membranes. 13(1). doi:10.3390/membranes13010003.
  5. Gedam VV. 2012. Performance Evaluation of Polyamide Reverse Osmosis Membrane for Removal of Contaminants in Ground Water Collected from Chandrapur District. Journal of Membrane Science & Technology. 02(03). doi:10.4172/2155-9589.1000117.
  6. Giannetti B, Agostinho F, Eras JC, Yang Z, Almeida C. 2020. Cleaner production for achieving the sustainable development goals. Journal of Cleaner Production. 271:122127. doi:10.1016/j.jclepro.2020.122127.
  7. Happel J. 1958. Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles. AIChE Journal. 4(2):197–201. doi:10.1002/aic.690040214.
  8. Happel J, Brenner H. 1983. Low Reynolds number hydrodynamics. Volume 1 of Mechanicsoffiuidsandtransportprocesses. Dordrecht: Springer Netherlands. doi:10.1007/97 8-94-009-8352-6.
  9. Hong S, Faibish RS, Elimelech M. 1997. Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions. Journal of Colloid and Interface Science. 196(2):267–277. doi:10.1006/jcis.1997.5209.
  10. Jenie SNA, Ghaisani A, Ningrum YP, Kristiani A, Aulia F, Petrus HTMB. 2018. Preparation of silica nanoparticles from geothermal sludge via sol-gel method. p. 020008. doi:10.1063/1.5064968.
  11. Kuloğlu SS, Yalçin E, Çavuşoğlu K, Acar A. 2022. Dosedependent toxicity profile and genotoxicity mechanism of lithium carbonate. Scientific Reports. 12(1):13504. doi: 10.1038/s41598-022-17838-0.
  12. Maulidia A, Sujoto VSH, Sudarmaja DPA, Putri JJE, Jenie SNA, Astuti W, Supriyatna YI, Warmada IW, Sutijan, Anggara F, Petrus HTBM. 2023. Kinetic Study of Lithium Leaching from Sidoarjo Mud Using Sulfuric Acid. Mining, Metallurgy and Exploration:1–10. doi:10.1007/s42461-023-008 12-3.
  13. Merriam ER, Strager MP, Petty JT. 2022. Source water vulnerability to elevated total dissolved solids within a mixeduse Appalachian River basin. PLOS Water. 1(8):e0000035. doi:10.1371/journal.pwat.0000035.
  14. Mustika PCBW, Astuti W, Sumardi S, Petrus HTBM, Sutijan. 2022. Separation Characteristic and Selectivity of Lithium from Geothermal Brine Using Forward Osmosis. Journal of Sustainable Metallurgy. doi:10.1007/s40831-0 22-00602-z.
  15. Ounissi T, Ammar RB, Larchet C, Chaabane L, Baklouti L, Dammak L, Hmida ESBH. 2022. Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation. Membranes. 12(2):1– 14. doi:10.3390/membranes12020244.
  16. Petrus HTBM, Olvianas M, Shafiyurrahman MF, Pratama IGAAN, Jenie SNA, Astuti W, Nurpratama MI, Ekaputri JJ, Anggara F. 2022. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. Gels. 8(4):233. doi:10.3390/gels8040 233.
  17. Primo EN, Chouchane M, Touzin M, Vazquez P, Franco AA. 2021. Understanding the calendering processability of Li(Ni0.33Mn0.33Co0.33)O2-based cathodes. Journal of Power Sources. 488:229361. doi:10.1016/j.jpowsour.2020. 229361.
  18. Ritchie H, Roser M. 2017. Water Use and Stress.
  19. Shigidi I, Anqi AE, Elkhaleefa A, Mohamed A, Ali IH, Brima EI. 2021. Temperature Impact on Reverse Osmosis Permeate Flux in the Remediation of Hexavalent Chromium. Water. 14(1):44. doi:10.3390/w14010044.
  20. Shirazi MMA, Kargari A. 2015. A review on applications of membrane distillation (MD) process for wastewater treatment. Journal of Membrane Science and Research. 1(3):101–112.
  21. Sujoto VSH, Sutijan, Astuti W, Mufakhir FR, Petrus HtBM. 2021. Lithium recovery from synthetic geothermal brine using electrodialysis method. IOP Conference Series: Earth and Environmental Science. 882(1):012003. doi: 10.1088/1755-1315/882/1/012003.
  22. Sujoto VSH, Sutijan, Astuti W, Sumardi S, Louis ISY, Petrus HTBM. 2022. Effect of Operating Conditions on Lithium Recovery from Synthetic Geothermal Brine Using Electrodialysis Method. Journal of Sustainable Metallurgy. 8(1):274–287. doi:10.1007/s40831-021-00488-3.
  23. Sutijan S, Darma SA, Hananto CM, Sujoto VSH, Anggara F, Jenie SNA, Astuti W, Mufakhir FR, Virdian S, Utama AP, Petrus HTBM. 2023. Lithium Separation from Geother mal Brine to Develop Critical Energy Resources Using High-Pressure Nanofiltration Technology: Characterization and Optimization. Membranes. 13(1):86. doi:10.339 0/membranes13010086.
  24. Swain S, Taloor AK, Dhal L, Sahoo S, Al-Ansari N. 2022. Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Applied Water Science. 12(6). doi:10.1007/s13201-022-01652-0.
  25. United States Geological Survey (USGS). 2013. Water Basics Glossary.
  26. Vajnhandl S, Valh JV. 2014. The status of water reuse in European textile sector. Journal of Environmental Management. 141:29–35. doi:10.1016/j.jenvman.2014.03.014.
  27. Veza I, Abas MA, Djamari DW, Tamaldin N, Endrasari F, Budiman BA, Idris M, Opia AC, Juangsa FB, Aziz M. 2022. Electric Vehicles in Malaysia and Indonesia: Opportunities and Challenges. Energies. 15(7):2564. doi:10.3390/en15 072564.
  28. Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. 2019. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers. 11(8). doi:10.3390/poly m11081252.
  29. Zhang R, Xia B, Li B, Lai Y, Zheng W, Wang H, Wang W, Wang M. 2018. Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) LithiumIon Battery—An Experimental Investigation. Energies. 11(9):2275. doi:10.3390/en11092275.