Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 1 (2024): Volume 18, Number 1, 2024

Effect of NaBH4 Concentration and Addition of Sodium Dodecyl Sulfate (SDS) Surfactant in the Synthesis of Silver Nanoparticles as an Antibacterial Material

DOI
https://doi.org/10.22146/jrekpros.12274
Submitted
February 20, 2024
Published
July 1, 2024

Abstract

This study was carried out to study the synthesis of silver nanoparticles in which the concentrations of the reducing agent NaBH4 and SDS surfactant varied. Furthermore, the silver nanoparticles formed were characterized and tested for their antibacterial capabilities to show how varying parameters could influence the properties of silver nanoparticles as an antibacterial material. 0.05 M AgNO3 precursor solution was mixed with NaBH4 solution as a reducing agent in the 0.001–0.015 M concentration range. In addition, surfactant was also added under CMC conditions. The Ag+ ion reduction process took place at room temperature for 5 minutes. Then, the colloidal silver nanoparticle samples were characterized and tested for antibacterial properties. The bacteria used are Escherichia coli and Staphylococcus aureus. This study reduced 98% of Ag+ ions to Ago particles when using surfactants and the highest concentration of NaBH4, whereas the synthesis of silver nanoparticles without surfactants could only reduce 88% of Ag+ ions. Using surfactants also produces particles with a much smaller diameter, around 51 nm. Antimicrobial testing also showed that silver nanoparticles with surfactants could inhibit bacterial growth. Thus, using surfactants and high concentrations of NaBH4 can provide better antimicrobial characteristics and capabilities to these silver nanoparticles.

References

  1. Adiatama AR, Susanti RF, Astuti W, Petrus HTBM, Wanta KC. 2022. Synthesis and characteristic of nanosilica from geothermal sludge: effect of surfactant. Metalurgi. 37(2):73. doi:10.14203/metalurgi.v37i2.637.
  2. Arif MS, Ulfiya R, Erwin, Panggabean AS. 2021. Synthesis silver nanoparticles using trisodium citrate and development in analysis method. AIP Conference Proceedings. volume 2360. AIP Publishing. doi:10.1063/5.0059493.
  3. Breijyeh Z, Jubeh B, Karaman R. 2020. Resistance of gramnegativebacteriato currentantibacterialagentsandapproaches to resolve it. Molecules. 25(6):1340. doi:10.3390/ molecules25061340.
  4. Bruna T, Maldonado-Bravo F, Jara P, Caro N. 2021. Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences. 22(13):7202. doi: 10.3390/ijms22137202.
  5. Calderón-Jiménez B, Montoro Bustos AR, Pereira Reyes R, Paniagua SA, Vega-Baudrit JR. 2022. Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media. Scientific Reports. 12(1). doi:10.1038/s41598-022-0 4921-9.
  6. Demchenko V, Riabov S, Kobylinskyi S, Goncharenko L, Rybalchenko N, Kruk A, Moskalenko O, Shut M. 2020. Effect of the type of reducing agents of silver ions in interpolyelectrolyte-metal complexes on the structure, morphology and properties of silver-containing nanocomposites. Scientific Reports. 10(1). doi:10.1038/s415 98-020-64079-0.
  7. Deodhar S, Rohilla P, Manivannan M, Thampi SP, Basavaraj MG. 2020. Robust method to determine critical micelle concentration via spreading oil drops on surfactant solutions. Langmuir. 36(28):8100–8110. doi:10.1021/acs.lang muir.0c00908.
  8. Franco D, Calabrese G, Guglielmino SPP, Conoci S. 2022. Metal-based nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms. 10(9):1778. doi:10.3390/microorganisms10091778.
  9. Iravani S, Korbekandi H, Mirmohammadi SV, Mekanik H. 2014. Plants in nanoparticle synthesis. Reviews in Advanced Sciences and Engineering. 3(3):261–274. doi:10.1166/ rase.2014.1069.
  10. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. 2019. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology. 53:101174. doi:10.1016/j.jddst.2019.101174.
  11. Kȩ dziora A, Wieczorek R, Speruda M, Matolínová I, Goszczyński TM, Litwin I, Matolín V, Bugla-Płoskońska G. 2021. Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies. Frontiers in Microbiology. 12. doi:10.338 9/fmicb.2021.659614.
  12. Kumar S, Mehta SK, Thakur V, Vashisht A, Singh K. 2022. Exploring the surfactant structure efficacy in controlling growth and stability of HgS nanoparticles in aqueous medium. Chemical Physics Impact. 4:100070. doi:10.1016/j. chphi.2022.100070.
  13. Mikhailova EO. 2020. Silver nanoparticles: Mechanism of action and probable bio-application. Journal of Functional Biomaterials. 11(4):84. doi:10.3390/jfb11040084.
  14. More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. 2023. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 11(2):369. doi:10.3390/microorganisms110203 69.
  15. Morsy SMI. 2014. Role of surfactants in nanotechnology and their applications. Int.J.Curr.Microbiol.App.Sci. 3(5):237–260. https://www.ijcmas.com/vol-3-5/SalwaM.I.Morsy.pdf.
  16. Niu Y, Omurzak E, Cai R, Syrgakbek kyzy D, Zhasnakunov Z, Satyvaldiev A, Palmer RE. 2022. Eco-friendly synthesis of silver nanoparticles using pulsed plasma in liquid: effect of surfactants. Surfaces. 5(1):202–208. doi:10.3390/surf aces5010013.
  17. Nur Sholikhah U, Pujiyanto A, Lestari E, Sarmini E, Widyaningrum T, Kadarisman K, Triyanto T, Puspitasari P. 2016. Stability of silver nanoparticles as imaging materials. The Journal of Pure and Applied Chemistry Research. 5(3):173–177. doi:10.21776/ub.jpacr.2016.005.03.295.
  18. Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. 2020. Surfactant self-assembling and critical micelle concentration: One approach fits all? Langmuir. 36(21):5745–5753. doi:10.1021/acs.langmuir.0c00420.
  19. Sirajudin A, Rahmanisa S. 2016. Nanopartikel perak sebagai penatalaksanaan penyakit infeksi saluran kemih silver. Majority. volume 5. p. 1–5. https://api.semanticscholar.org/CorpusID:194854385.
  20. Suárez-López R, Puntes VF, Bastús NG, Hervés C, Jaime C. 2022. Nucleation and growth of gold nanoparticles in the presence of different surfactants. A dissipative particle dynamics study. Scientific Reports. 12(1). doi:10.1038/ s41598-022-18155-2.
  21. Wanta KC, Lim S, Susanti RF, Gemilar GP, Astuti W, Petrus HTBM. 2021. Effect of surfactant type on synthesis and characteristics of nanonickel hydroxide. Jurnal Rekayasa Proses. 15(2):217. doi:10.22146/jrekpros.69723.
  22. Winastri NLAP, Muliasari H, Hidayati E. 2020. Aktivitas antibakteri air perasan dan rebusan daun calincing (Oxalis corniculata L.) terhadap Streptococcus mutans. Berita Biologi. 19(2). doi:10.14203/beritabiologi.v19i2.3786.
  23. Zhang Q, Hu Y, Masterson CM, Jang W, Xiao Z, Bohloul A, Garcia-Rojas D, Puppala HL, Bennett G, Colvin VL. 2022. When function is biological: Discerning how silver nanoparticle structure dictates antimicrobial activity. iScience. 25(7):104475. doi:10.1016/j.isci.2022.104475.
  24. Zulaicha AS, Saputra IS, Sari IP, Ghifari MA, Yulizar Y, Permana YN, Sudirman S. 2021. Green synthesis nanopartikel perak (AgNPs) menggunakan bioreduktor alami ekstrak daun ilalang (Imperata cylindrica L). Rafflesia Journal of Natural and Applied Sciences. 1(1):11–19. doi:10.33369/rjn a.v1i1.15588.