Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 17 No 2 (2023): Volume 17, Number 2, 2023

Heavy hydrocarbon recovery with integration of turboexpander and JT valve from highly CO2-containing natural gas for gas transmission pipeline

DOI
https://doi.org/10.22146/jrekpros.82485
Submitted
November 29, 2023
Published
December 31, 2023

Abstract

Demand of natural gas is predicted to increase since many valuable products can be produced. Water and heavy hydrocarbon content are the key for gas pipeline facility. To meet requirement of natural gas transportation, dehydration unit (DHU) and hydrocarbon dew point control unit (DPCU) are necessary to avoid water and hydrocarbon condensation during transmission. The conventional dehydration technology, TEG contactor, can lower water content from 1,304 mg/m3 to 80.35 mg/m3 where the maximum limit of water content in natural gas is 97 mg/m3 to prevent hydrate formation. DPCU is installed to remove heavy hydrocarbon, especially C5+. Integration of JT valve and turboexpander was employed to obtain the low gas dew point. The hot gas stream that entered the JT valve was observed. The lower hot bypass gas was applied, the lower hydrocarbon dew point and the more condensate flowrate was achieved. The highest power generation can be gained at low hot gas flow ratio which also influenced the exit pressure and temperature of compressor. In pipeline simulation, the pressure and temperature drop occurred at the high hot gas rate. To examine the arrival condition, dew point curves were generated and showed that the limitation of hot gas flow ratio has to be below 0.6 to prevent heavy hydrocarbon condensation in pipeline.

References

  1. Capata R, Pantano F. 2020. Expander design procedures and selection criterion for small rated organic rankine cycle systems. Energy Science and Engineering. 8(10):3380– 3414. doi:10.1002/ese3.710.
  2. Chekardovskiy M, Chekardovskiy S, Ilyukhin K, Gladenko A. 2016. Upgraded Algorithm for Calculating the TurboExpander of Gas Distribution Stations. MATEC Web of Conferences. 73:6–11. doi:10.1051/matecconf/20167301 020.
  3. Díaz Rincón M, Jiménez-Junca C, Roa Duarte C. 2016. A novel absorption process for small-scale natural gas dew point control and dehydration. Journal of Natural Gas Science and Engineering. 29:264–274. doi:10.1016/j.jngse.2016.01. 016.
  4. Galatro D, Marín-Cordero F. 2014. Considerations for the dew point calculation in rich natural gas. Journal of Natural Gas Science and Engineering. 18:112–119. doi:10.1016/j.jn gse.2014.02.002.
  5. He TB, Ju YL. 2014. A novel process for small-scale pipeline natural gas liquefaction. Applied Energy. 115:17–24. doi: 10.1016/j.apenergy.2013.11.016.
  6. Hidayat M, Hartanto DT, Azis MM, Sutijan S. 2020. Studi Penambahan Etilena Glikol dalam Menghambat Pembentukan Metana Hidrat pada Proses Pemurnian Gas Alam. Jurnal Rekayasa Proses. 14(2):198. doi:10.22146/jrekpros. 59871.
  7. International Energy Agency (IEA). 2022. Gas Market Report, Q1-2022. International Energy Agency:61. https://www.ie a.org/reports/gas-market-report-q1-2022.
  8. Jalali A, Lotfi M, Zilabi S, Mohammadi AH. 2020. Recovery enhancement of liquid hydrocarbons in dew point control unit of natural gas processing plant. Separation Science and Technology (Philadelphia). 55(7):1407–1414. doi: 10.1080/01496395.2019.1591450.
  9. Li Y, Xu F, Gong C. 2017. System optimization of turboexpander process for natural gas liquid recovery. Chemical Engineering Research and Design. 124:159–169. doi: 10.1016/j.cherd.2017.06.001.
  10. Mokhatab S, Poe WA, Mak JY. 2015. Handbook of Natural Gas Transmission and Processing. Oxford: Gulf Professional Publishing. doi:https://doi.org/10.1016/C2013-0-15625-5.
  11. Mutiara T, Budhijanto, Made Bendiyasa I, Prasetya I. 2016. A thermodynamic study of methane hydrates formation in glass beads. ASEAN Journal of Chemical Engineering. 16(1):15–22. doi:10.22146/ajche.49670.
  12. Noaman A, Ebrahiem E. 2021. Comparison of Natural Gas Hydrocarbon Dewpointing Control Methods. Journal of Advanced Engineering Trends. 40(2):99–116. doi:10.21608/j aet.2020.31288.1020.
  13. Rahimpour MR, Seifi M, Paymooni K, Shariati A, Raeissi S. 2011. Enhancement in NGL production and improvement in water dew point temperature by optimization of slug catchers’ pressures in water dew point adjustment unit. Journal of Natural Gas Science and Engineering. 3(1):326–333. doi:10.1016/j.jngse.2011.01.001.
  14. Shoaib AM, Bhran AA, Awad ME, El-Sayed NA, Fathy T. 2018. Optimum operating conditions for improving natural gas dew point and condensate throughput. Journal of Natural Gas Science and Engineering. 49(September 2017):324–330. doi:10.1016/j.jngse.2017.11.008.
  15. Uwitonze H, Hwang KS, Lee I. 2020. Improving NGL recovery process with dividing-wall column for offshore applications. Chemical Engineering and Processing - Process Intensification. 147(November 2019):107747. doi:10.1016/ j.cep.2019.107747.
  16. Vatani A, Mehrpooya M, Pakravesh H. 2013. Modification of an industrial ethane recovery plant using mixed integer optimization and shuffled frog leaping algorithm. Arabian Journal for Science and Engineering. 38(2):439–455. doi:10.1007/s13369-012-0433-9.