Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 1 (2024): Volume 18, Number 1, 2024

Pengaruh parameter operasi terhadap persentase rekoveri litium dari sea water reverse osmosis (SWRO)

DOI
https://doi.org/10.22146/jrekpros.79556
Submitted
November 29, 2023
Published
January 17, 2024

Abstract

Konsentrasi litium dalam sea water reverse osmosis (SWRO) terhitung masih kecil dibandingkan dengan sumber konvensional. Tren penggunaan air laut di dunia diperkirakan naik untuk tahun-tahun mendatang. Tujuan dari penelitian ini adalah untuk mengekstrak litium dari limbah cair SWRO. Bahan yang digunakan adalah limbah cair SWRO yang berasal dari PT. Cirebon Electric Power. Tahap awal yang perlu dilakukan adalah proses evaporasi. Proses evaporasi dilakukan pada temperatur 90°C. Proses evaporasi bertujuan untuk memekatkan atau mengkonsentrasikan mineral tertentu. Pada tahapan ini persentase penguapan divariasikan (70, 80, dan 90%). Proses presipitasi dilakukan dengan menggunakan bantuan natrium karbonat (Na2CO3). Tahap awal adalah pembuatan larutan Na2CO3 3 Molar. 250 mL larutan hasil evaporasi disiapkan dan dipanaskan pada berbagai variasi temperatur (70, 80, dan 90 °C). Analisa tersebut juga menunjukkan kecenderungan semakin meningkatnya persentase rekoveri yang sejalan dengan meningkatnya persentase penguapan. Meskipun dampaknya kecil, temperatur presipitasi juga memberikan dampak dalam proses persentase rekoveri litium. Kondisi terbaik di dalam penelitian ini adalah pada persentase penguapan 90% dengan temperatur presipitasi 90 °C dengan persentase rekoveri mencapai lebih dari 70%.

References

  1. Breig SJM, Luti KJK. 2021. Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings. 42:2277–2284. doi:10.1016/j.matpr.2020.12.316.
  2. CHOI DH, WANG JP. 2020. A study on the synthesis of lithium carbonate (li2co3) from waste acidic sludge. Archives of Metallurgy and Materials. 65(4):1351–1355. doi:10.24425/a mm.2020.133698.
  3. Coterillo R, Gallart LE, Fernández-Escalante E, Junquera J, García-Fernández P, Ortiz I, Ibañez R, San-Román MF. 2022. Selective extraction of lithium from seawater desalination concentrates: Study of thermodynamic and equilibrium properties using Density Functional Theory (DFT). Desalination. 532:115704. doi:10.1016/j.desal.2022.1 15704.
  4. Flexer V, Fernando C, Inés C. 2018. Science of the Total Environment Lithium recovery from brines : A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment. 639:1188–1204. https://doi.org/10.1016/j.sc itotenv.2018.05.223.
  5. Glasstone S, Sesonske A. 1994. Nuclear Reactor Engineering. Engineering. C:395. http://link.springer.com/10.1007/97 8-1-4615-2083-2.
  6. Grosjean C, Herrera Miranda P, Perrin M, Poggi P. 2012. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews. 16(3):1735–1744. http://dx.d oi.org/10.1016/j.rser.2011.11.023.
  7. H Tangkas IWCW, Astuti W, Sutijan, Sumardi S, Petrus HTBM. 2021. Lithium titanium oxide synthesis by solid-state reaction for lithium adsorption from artificial brine source. IOP Conference Series: Earth and Environmental Science. 882(1):012005. doi:10.1088/1755-1315/882/1/012005.
  8. Han B, Anwar UI Haq R, Louhi-Kultanen M. 2020. Lithium carbonate precipitation by homogeneous and heterogeneous reactive crystallization. Hydrometallurgy. 195. doi: 10.1016/j.hydromet.2020.105386. Hartono M, Astrayudha MA, Petrus HTBM, Budhijanto W, Sulistyo H. 2017. LITHIUM RECOVERY OF SPENT LITHIUMION BATTERY USING BIOLEACHING FROM LOCAL SOURCES MICROORGANISM. Rasayan Journal of Chemistry. doi:10.7324/RJC.2017.1031767.
  9. Huang Y, Wang R. 2019. Highly Effective and Low-Cost IonImprinted Polymers Loaded on Pretreated Vermiculite for Lithium Recovery. Industrial & Engineering Chemistry Research. 58(27):12216–12225. doi:10.1021/acs.iecr.9 b01244.
  10. Khalil A, Mohammed S, Hashaikeh R, Hilal N. 2022. Lithium recovery from brine: Recent developments and challenges. Desalination. 528:115611. doi:10.1016/j.desal.2022.1 15611.
  11. Lide DR. 2007. CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (National Institute of Standards and Technology). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. 139.95. ISBN 0- 8493-0487-3. Journal of the American Chemical Society. 129(3):724–724. doi:10.1021/ja069813z.
  12. Murodjon S, Yu X, Li M, Duo J, Deng T. 2020. Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water and Geothermal Water. In: Thermodynamics and Energy Engineering. IntechOpen. doi: 10.5772/intechopen.90371.
  13. Opitz A, Badami P, Shen L, Vignarooban K, Kannan AM. 2017. Can Li-Ion batteries be the panacea for automotive applications? Renewable and Sustainable Energy Reviews. 68(October 2016):685–692. http://dx.doi.org/10.1016/j.rse r.2016.10.019.
  14. Qiu Y, Ruan H, Tang C, Yao L, Shen J, Sotto A. 2019. Study on recovering high-concentration lithium salt from lithiumcontaining wastewater using a hybrid reverse osmosis (RO)-electrodialysis (ED) process. ACS Sustainable Chemistry and Engineering. 7(15):13481–13490. doi:10.1021/ acssuschemeng.9b03108.
  15. Seidell A. 1940. Solubilities of inorganic and metal organic compounds : a compilation of quantitative solubility data from the periodical literature.
  16. Sujoto VSH, Sutijan, Astuti W, Sumardi S, Louis ISY, Petrus HTBM. 2022. Effect of Operating Conditions on Lithium Recovery from Synthetic Geothermal Brine Using Electrodialysis Method. Journal of Sustainable Metallurgy. 8(1):274–287. doi:10.1007/s40831-021-00488-3.
  17. Sun Y, Wang Q, Wang Y, Yun R, Xiang X. 2021. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Separation and Purification Technology. 256:117807. doi:10.1016/j.seppur .2020.117807.
  18. Sutijan S, Wahyudi S, Ismail MF, Mustika PCB, Astuti W, Prasetya A, Petrus HTBM. 2022. Forward Osmosis to Concentrate Lithium from Brine: The Effect of Operating Conditions (pH and Temperature). International Journal of Technology. 13(1):136. doi:10.14716/ijtech.v13i1.4371.
  19. Wang H, Du B, Wang M. 2018. Study of the Solubility, Supersolubility and Metastable Zone Width of Li2CO3 in the LiClNaCl-KCl-Na2SO4 System from 293.15 to 353.15K. Journal of Chemical and Engineering Data. 63(5):1429–1434. doi:10.1021/acs.jced.7b01012.
  20. Žeželj B, Dimovski P. 2019. Leaching requirements for saltaffected soils of West Nubian valley of Nile River (North Sudan). Zemljiste i biljka. 68(1):24–35. doi:10.5937/zemb ilj1901024q.
  21. Zhang Y, Wang L, Sun W, Hu Y, Tang H. 2020. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. Journal of Industrial and Engineering Chemistry. 81:7–23. doi:10.1016/j.ji ec.2019.09.002.