Skip to main navigation menu Skip to main content Skip to site footer

Review

Vol 16 No 1 (2022): Volume 16, Number 1, 2022

Sintesis polivinil alkohol tersulfonasi sebagai katalis dalam produksi metil ester: Review

DOI
https://doi.org/10.22146/jrekpros.70698
Submitted
November 20, 2023
Published
June 30, 2022

Abstract

Sulfonated polyvinyl alcohol (PVA) can be used as a heterogeneous catalyst in esterification or transesterification reactions during methyl ester production. This catalyst with PVA support has the potential to be used commercially like Amberlyst 46. However, there are several drawbacks in the conventional methods to produce sulfonated PVA compared to Amberlyst 46. In this paper, various processes of sulfonated PVA synthesis will be discussed including the advantages and disadvantages compared to Amberlyst 46. The synthesis of sulfonated PVA catalysts can be carried out using sulfosuccinate acid reagents or other acid reagents that have sulfonic groups that act as the active sites of the catalysts. The use of sulfosuccinate acid as the reagent produces catalysts with better catalytic activity, but the resulting product is not in granule form like Amberlyst 46 and can only be used continuously for seven times. The use of chlorosulfonic acid as the reagent resulted in granular catalysts. However, the catalyst has less catalytic activity and stability, and the reagent has a relatively high environmental impact. For the synthesis performed using sulfuric acid as the reagent, no result regarding catalytic activity has been reported elsewhere. The blending of the catalyst with other polymers resulted in improvements in the thermal stability and mechanical strength of the sulfonated polyvinyl alcohol. After a careful review of the procedures, we propose blending or double cross-linking processes combined with sulfonated PVA synthesis as a promising method to increase the thermal stability and mechanical strength of the catalysts. However, it is necessary to perform further laboratory validations on the catalytic activity of the catalysts produced from the combined method because blending may reduce the acid capacity of the catalyst.

References

Ameer ZJA, Al-Mutairi NH. 2018. Miscibility Improvement of LDPE/PVA Blends with Maleic Acid Additions. IOP Conference Series: Materials Science and Engineering. 433:012074. doi: 10.1088/1757-899X/433/1/012074. https://iopscience.iop.org/article/10.1088/1757-899X/433/1/012074.

Boroglu MS, Cavus S, Boz I, Ata A. 2011. Synthesis and characterization of poly(vinyl alcohol) proton exchange membranes modified with 4,4-diaminodiphenylether2,2-disulfonic acid. Express Polymer Letters. 5(5):470–478. doi:10.3144/expresspolymlett.2011.45. http://www.expresspolymlett.com/letolt.php?file=EPL-00 02054&mi=c.

Caetano C, Guerreiro L, Fonseca I, Ramos A, Vital J, Castanheiro J. 2009. Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Applied Catalysis A: General. 359(1-2):41–46. doi:10.1016/j.apcata.2009.02.028. https://linkinghub.elsevier.com/retrieve/pii/S0926860X 09001495.

Chang Y, Lee C, Bae C. 2014. Polystyrene-based superacidic solid acid catalyst: synthesis and its application in biodiesel production. RSC Adv.. 4(88):47448–47454. doi:10.103 9/C4RA07747D. http://xlink.rsc.org/?DOI=C4RA07747D.

Coutinho FMB, Rezende SM, Soares BG. 2006. Characterization of sulfonated poly(styrene–divinylbenzene) and poly(divinylbenzene) and its application as catalysts in esterification reaction. Journal of Applied Polymer Science. 102(4):3616–3627. doi:10.1002/app.24046. https://onlinelibrary.wiley.com/doi/10.1002/app.24046.

Francuskiewicz F. 1994. Dissolution and Precipitation of Polymers. In: Polymer Fractionation. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 10–18. doi:10.1007/978-3-64 2-78704-1_3.

Fu J, Chen L, Lv P, Yang L, Yuan Z. 2015. Free fatty acids esterificationforbiodieselproductionusingself-synthesized macroporous cation exchange resin as solid acid catalyst. Fuel. 154:1–8. doi:10.1016/j.fuel.2015.03.048. https://linkinghub.elsevier.com/retrieve/pii/S0016236115003440.

Gan S, Ng HK, Chan PH, Leong FL. 2012. Heterogeneous free fatty acids esterification in waste cooking oil using ionexchange resins. Fuel Processing Technology. 102:67–72. doi:10.1016/j.fuproc.2012.04.038. https://linkinghub.elsevier.com/retrieve/pii/S0378382012001671.

Kar P, Nayak A, Bhoi Y, Mishra B. 2016. Preparation and catalytic application of sulfonated PVA-Zr-pillared clay nanocomposite materials towards one pot synthesis of hexahydropyrimidines. Microporous and Mesoporous Materials. 223:176–186. doi:10.1016/j.micromeso.2015.11.006. https://linkinghub.elsevier.com/retrieve/pii/S1387181115 006058.

Kraushaar-Czarnetzki B, Peter Mller S. 2009. Shaping of Solid Catalysts. In: Synthesis of Solid Catalysts. Weinheim, Germany: Wiley-VCH Verlag GmbH Co. KGaA. p. 173–199. doi:10.1002/9783527626854.ch9.

Li HQ, Liu XJ, Wang H, Yang H, Wang Z, He J. 2020. Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): Excellent relative selectivity. Journal of Membrane Science. 595:117511. doi:10.1016/j.memsci.2019.117511. https://linkinghub.elsevier.com/retrieve/pii/S03767388 19315200.

Mansir N, Taufiq-Yap YH, Rashid U, Lokman IM. 2017. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management. 141:171–182. doi:10.1016/j.enconman.2016.07.037. https://linkinghub.elsevier.com/retrieve/pii/S019689041630615X.

Moulijn J, van Leeuwen P, van Santen R. 1993. Chapter 8 Preparation of Catalyst supports and zeolites. Elsevier. p. 309– 333. doi:10.1016/S0167-2991(08)63812-4.

Pérez-Maciá MA, Curcó D, Bringué R, Iborra M, Alemán C. 2015. Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins. Soft Matter. 11(11):2251–2267. doi: 10.1039/C4SM02417F. http://xlink.rsc.org/?DOI=C4SM02417F.

Rabiu A, Elias S, Oyekola O. 2018. Oleochemicals from Palm Oil for the Petroleum Industry. In: Palm Oil. InTech. doi: 10.5772/intechopen.76771.

Remiš T, Bělský P, Andersen SM, Tomáš M, Kadlec J, Kovářík

T. 2020. Preparation and Characterization of Poly(Vinyl Alcohol) (PVA)/SiO 2 , PVA/Sulfosuccinic Acid (SSA) and PVA/SiO 2 /SSA Membranes: A Comparative Study. Journal of Macromolecular Science, Part B. 59(3):157–181. doi:10.1080/00222348.2019.1697023. https://www.tand fonline.com/doi/full/10.1080/00222348.2019.1697023.

Rhim J, Park H, Lee C, Jun J, Kim D, Lee Y. 2004. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science. 238(1-2):143–151. doi: 10.1016/j.memsci.2004.03.030. https://linkinghub.elsevier.com/retrieve/pii/S0376738804002315.

Salleh MSNB, Saadon N, Razali N, Omar Z, Khalid SA, Mustaffa AR, Yashim MM, Rahman WAWA. 2012. Effects of glycerol content in modified polyvinyl alcohol-tapioca starch blends. 2012 IEEE Symposium on Humanities, Science and Engineering Research. IEEE. p. 523–526. doi:10.1109/SHUSER.2012.6268885. http://ieeexplore.iee e.org/document/6268885/.

Stribeck N, Zeinolebadi A, Fakirov S, Bhattacharyya D, Botta S. 2013. Extruded blend films of poly(vinyl alcohol) and polyolefins: common and hard-elastic nanostructure evolution in the polyolefin during straining as monitored by SAXS. Science and Technology of Advanced Materials. 14(3):035006. doi:10.1088/1468-6996/14/3/035006. https://www.tandfonline.com/doi/full/10.1088/1468- 6996/14/3/035006.

Su F, Guo Y. 2014. Advancements in solid acid catalysts for biodiesel production. Green Chem.. 16(6):2934–2957. doi: 10.1039/C3GC42333F. http://xlink.rsc.org/?DOI=C3GC4 2333F.

The Dow Chemical Company. 2021. Amberlyst 46 Datasheet. Technical report.

Thermo Fisher Scientific. 2009. Safety Data Sheet Pyridine. Technical report.

Thermo Fisher Scientific. 2012. Safety Data Sheet Chlorosulfonic Acid. Technical report.

Tropecêlo AI, Caetano CS, Caiado M, Castanheiro JE. 2016. Biodiesel production from waste cooking oil over sulfonated catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 38(2):174–182. doi:10.1080/15567036.2012.747035. http://www.tandfonline.com/doi/full/10.1080/15567036.2012.747035.

Tsai CE, Lin CW, Hwang BJ. 2010. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based protonconducting membranes with high sulfonation. Journal of Power Sources. 195(8):2166–2173. doi:10.1016/j.jpowsour.2009.10.055. https://linkinghub.elsevier.com/retrieve/pii/S037877530901859X.

Wang W, Zhang H, Dai Y, Hou H, Dong H. 2015. Effects of various nanomaterials on the properties of starch/poly(vinyl alcohol) composite films formed by blow extrusion process. Iranian Polymer Journal. 24(8):687–696. doi:10.100 7/s13726-015-03597. http://link.springer.com/10.1007/ s13726-015-0359-7.

Wang W, Zhang H, Dai Y, Hou H, Dong H. 2017. Effects of low poly(vinyl alcohol) content on properties of biodegradable blowing films based on two modified starches. Journal of Thermoplastic Composite Materials. 30(7):1017– 1030. doi:10.1177/0892705715614080. http://journals.sagepub.com/doi/10.1177/0892705715614080.

Yan X, Cayla A, Devaux E, Salaün F. 2018. Microstructure Evolution of Immiscible PP-PVA Blends Tuned by Polymer Ratio and Silica Nanoparticles. Polymers. 10(9):1031. doi:10.3390/polym10091031. http://www.mdpi.com/2073- 4360/10/9/1031.

Yu H, Wang Y. 2021. Sulfonated poly (arylene ether sulfone) graft-sulfonated poly (vinyl alcohol) proton exchange membranes: Improved proton selectivity. High Performance Polymers. 33(4):451–461. doi:10.1177/0954008320968164. http://journals.sagepub.com/doi/10.1177/0954008320968164.

Zhang Y, Wan Y, Pan G, Shi H, Yan H, Xu J, Guo M, Wang Z, Liu Y. 2017. Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling. Applied Surface Science. 419:177–187. doi:10.1016/j.apsusc.2017.05.047. https://linkinghub.elsevier.com/retrieve/pii/S0169433217313612.