Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 16 No 1 (2022): Volume 16, Number 1, 2022

Teknoekonomi penyingkiran senyawa sulfur dari kondensat gas alam dengan metode desulfurisasi oksidatif-ekstraktif

DOI
https://doi.org/10.22146/jrekpros.69864
Telah diserahkan
November 20, 2023
Diterbitkan
Juni 30, 2022

Abstrak

Dalam proses produksi minyak dan gas, selain hidrokarbon, dihasilkan pula sejumlah pengotor antara lain CO2 dan sulfur dengan konsentrasi yang bervariasi, tergantung pada kondisi dan karakteristik reservoir serta lokasi dimana minyak dan gas tersebut berada. Untuk proses penghilangan sulfur dari kondensat, teknologi yang umum digunakan adalah HDS (Hydrodesulfurization). Namun dengan kebutuhan proses seperti suhu tinggi, tekanan, dan konsumsi hidrogen yang intensif, diperlukan teknologi alternatif untuk desulfurisasi ini. Salah satunya adalah desulfurisasi oksidatif-ekstraktif. Evaluasi teknis dan ekonomi untuk mengetahui kelayakan penerapan pada skala industri perlu dikaji lebih lanjut. Kajian proses desulfurisasi oksidatif-ekstraktif senyawa sulfur (direpresentasikan sebagai dibenzothiophene, DBT) dilakukan dengan menggunakan H2O2/asam format sebagai oksidator dan katalis, serta ekstraksi dengan DMF. Untuk kapasitas 1000 bpd kondensat dengan sulfur 1%-wt, desulfurisasi berhasil dilakukan dengan removal sulfur sebesar 96,55% dan recovery kondensat sebesar 99,41%. Diperlukan biaya pemrosesan sebesar 9,14 USD/barel, dan 84% di antaranya diperlukan untuk bahan kimia. Konfigurasi proses alternatif untuk pemulihan DMF berhasil menurunkan biaya bahan kimia sebesar 35,5% dan menurunkan total biaya pemrosesan sebesar 27,0% menjadi 6,67 USD/barel. Pada konfigurasi proses alternatif ini, penghilangan sulfur mencapai 95,80% dengan perolehan kondensat sebesar 99,21%.

Referensi

Aminabhavi TM, Naik HG. 2002. Pervaporation separation of water/dimethylformamide mixtures using poly(vinyl alcohol)-g-polyacrylamide copolymeric membranes. Journal of Applied Polymer Science. 83(2):273–282. doi: 10.1002/app.2242.

Anderson K, Atkins MP, Borges P, Chan ZP, Rafeen MS, Sebran NH, van der Pool E, Vleeming JH. 2017. Economic analysis of ultrasound-assisted oxidative desulfurization. Energy Sources, Part B: Economics, Planning, and Policy. 12(4):305–311. doi: 10.1080/15567249.2014.917131.

Azimzadeh H, Akbari A, Omidkhah MR. 2017. Catalytic oxidative desulfurization performance of immobilized NMP.FeCl3 ionic liquid on Al2O3 support. Chemical Engineering Journal. 320:189–200. doi: 10.1016/j.cej.2017.03.027.

BakerRisk. 2021. Previous year’s nelson-farrar cost index reports. San Antonio: BakerRisk. [Online] Available: https://www.bakerrisk.com/products/nelson-farrar-cost-index/.

Bian H, Zhang H, Li D, Duan Z, Zhang H, Zhang S, Xu B. 2020. Insight into the oxidative desulfurization mechanism of aromatic sulfur compounds over Ti-MWW zeolite: A computational study. Microporous and Mesoporous Materials. 294:109837. doi: 10.1016/j.micromeso.2019.109837.

Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA. 2015. Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technologies and Environmental Policy. 17(1):29–37. doi: 10.1007/s10098-014-0812-x.

Cao Y, Wang H, Ding R, Wang L, Liu Z, Lv B. 2020. Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst. Applied Catalysis A: General. 589:117308. doi: 10.1016/j.apcata.2019.117308.

Chandra Srivastava V. 2012. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Advances. 2(3):759–783. doi: 10.1039/C1RA00309G.

Collins FM, Lucy AR, Sharp C. 1997. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. Journal of Molecular Catalysis A: Chemical. 117(1-3):397–403. doi: 10.1016/S1381-1169(96)00251-8.

Dehkordi AM, Kiaei Z, Sobati MA. 2009. Oxidative desulfurization of simulated light fuel oil and untreated kerosene. Fuel Processing Technology. 90(3):435–445. doi: 10.1016/j.fuproc.2008.11.006.

Gao S, Chen X, Xi X, Abro M, Afzal W, Abro R, Yu G. 2019. Coupled oxidation-extraction desulfurization: a novel evaluation for diesel fuel. ACS Sustainable Chemistry & Engineering. 7(6):5660–5668. doi: 10.1021/acssuschemeng.8b04218.

Hao L, Benxian S, Zhou X. 2005. An improved desulfurization process based on H2O2/formic acid oxidation system followed by liquid-liquid extraction: Part 1.Cokergasoilfeedstocks. Petroleum Science and Technology. 23(7-8):991–999. doi: 10.1081/LFT-200034498.

Hayyan M, Ibrahim MH, Hayyan A, AlNashef IM, Alakrach AM, Hashim MA. 2015. Facile route for fuel desulfurization using generated superoxide ion in ionic liquids. Industrial & Engineering Chemistry Research. 54(49):12263–12269. doi: 10.1021/acs.iecr.5b03427.

Jin C, Li G, Wang X, Zhao L, Liu L, Liu H, Liu Y, Zhang W, Han X, Bao X. 2007. Synthesis, characterization and catalytic performance of Ti containingmesoporousmolecular sieves assembled from titanosilicate precursors. Chemistry of Materials. 19(7):1664–1670. doi: 10.1021/cm0625777.

Khalfalla HA. 2009. Modelling and optimsation of oxidative desulphurization process for model sulphur compounds and heavy gas oil [dissertation]. [Bradford]: University of Bradford. http://hdl.handle.net/10454/4247.

Kedra-Królik K, Fabrice M, Jaubert JN. 2011. Extraction of thiophene or pyridine from n-Heptane using ionic liquids. Gasoline and diesel desulfurization. Industrial & Engineering Chemistry Research. 50(4):2296–2306. doi: 10.1021/ie101834m.

Li SW, Gao RM, Zhang RL, Zhao Js. 2016. Template method for a hybrid

catalyst material POM@MOF-199 anchored on MCM-41: Highly oxidative desulfurization of DBT under molecular oxygen. Fuel. 184:18–27. doi: 10.1016/j.fuel.2016.06.132.

Nancarrow P, MustafaN, Shahid A, Varughese V, Zaffar U, Ahmed R, Akther N, Ahmed H, AlZubaidy I, Hasan S, Elsayed Y, Sara Z. 2015. Technical evaluation of ionic liquid extractive processing of ultra low sulfur diesel fuel. Industrial & Engineering Chemistry Research. 54(43):10843–10853. doi: 10.1021/acs.iecr.5b02825.

Ponce CH. 2020. Modeling of sulfur removal from heavy fuel oil using ultrasound assisted oxidative desulfurization [Master’s thesis]. [Thuwal]: King Abdullah University of Science and Technology. https://repository.kaust.edu.sa/bitstream/handle/10754/664544/ClaudiaHernandezPonceThesis%281%29.pdf?sequence=2&isAllowed=n.

Ribeiro SO, Granadeiro CM, Almeida PL, Pires J, Capel-Sanchez MC, Campos-Martin JM, Gago S, de Castro B, Balula SS. 2019. Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: biphasic versus solvent-free systems. Catalysis Today. 333:226–236. doi: 10.1016/j.cattod.2018.10.046.

Rodríguez-Cabo B, Soto A, Arce A. 2013. Desulfurization of fuel-oils with [C2mim][NTf2]: a comparative study. The Journal of Chemical Thermodynamics. 57:248–255. doi: 10.1016/j.jct.2012.08.031.

Schattenmann, F, Hoy, S, dan Ramage D. 2010. Ultrashound assisted oxidative desulfurization. Houston: SulphCo. http://www.pluritas.com/_public/_public_sulphco/NPRA_AM-10-153v1.pdf.

Shang H, Du W, Liu Z, Zhang H. 2013. Development of microwave induced hydrodesulfurization of petroleum streams: a review. Journal of Industrial and Engineering Chemistry. 19(4):1061–1068. doi: 10.1016/j.jiec.2012.12.044.

Sun X, Zhao X, Du W, Liu D. 2011. Kinetics of formic acid-autocatalyzed preparation of performic acid in aqueous phase. Chinese Journal of Chemical Engineering. 19(6):964–971. doi: 10.1016/S1004-9541(11)60078-5.

Wei Y, Wu P, Luo J, Dai L, Li H, Zhang M, Chen L, Wang L, Zhu W, LiH. 2020. Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization. Microporous and Mesoporous Materials. 293:109788. doi: 10.1016/j.micromeso.2019.109788.

Yun GN, Lee YK. 2013. Beneficial effects of polycyclic aromatics on oxidative desulfurization of light cycle oil over phosphotungstic acid (PTA) catalyst. Fuel Processing Technology. 114:1–5. doi: 10.1016/j.fuproc.2013.03.035.

Zhang Q, Zhu M, Jones I, Zhang Z, Zhang D. 2020. Desulfurization of spent tire pyrolysis oil and its distillate via combined catalytic oxidation using H2O2 with formic acid and selective adsorption over Al2O3. Energy & Fuels. 34(5):6209–6219. doi: 10.1021/acs.energyfuels.9b03968.

Zhang Z, Xu S, Wu Y, Shi S, Xiao G. 2021. Recent advances of pervaporation separation in DMF/H2O solutions: a review. Membranes. 11(6):455. doi: 10.3390/membranes11060455.

Zhu J, Wu P, Chen L, He J, Wu Y, Wang C, Chao Y, Lu L, He M, Zhu W, Li H. 2020. 3D-printing of integrated spheres as a superior support of phosphotungstic acid for deep oxidative desulfurization of fuel. Journal of Energy Chemistry. 45:91–97. doi: 10.1016/j.jechem.2019.10.001.