Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 14 No 1 (2020): Volume 14, Number 1, 2020

Peningkatan produksi biogas dari palm oil mill effluent (POME) dengan fluidisasi media zeolit termodifikasi pada sistem batch

DOI
https://doi.org/10.22146/jrekpros.56133
Submitted
November 17, 2023
Published
June 30, 2020

Abstract

The production of crude palm oil (CPO) in Indonesia tends to increase over time. Palm oil mill effluent (POME) is the wastewater generated from the palm oil mill process with high organic content. POME is a potential source for anaerobic digestion due to its high organic content. The challenge of POME treatment using an anaerobic process is to enhance biogas production with high soluble chemical oxygen demand (sCOD) removal efficiency. The purpose of this study was to evaluate the effect of selected trace elements addition onto zeolite as immobilization media to the anaerobic digestion of POME in a fluidized batch system. Natural zeolite was used as the medium to immobilize microorganisms in an anaerobic fluidized bed reactor (AFBR). This study used three trace elements impregnated to natural zeolites, i.e. Ni2+, Zn2+, Mg2+. The result shows that Ni2+ and Zn2+improve the methanogenesis process, prevent the accumulation of VFA as an intermediate product and increase the methane (biogas) productionMeanwhile, Mg2+ only reduced sCOD significantly but it did not affect methane production. Fluidization enhanced the performance of the POME anaerobic digestion process. The fluidization provide a positive effect to enhance biogas production and sCOD removal. The efficiency of sCOD removal in the entire reactors were 80.82%; 81.77%; 75.89% for AFBR-Ni; AFBR-Zn and AFBR-control respectively. The total volume of methane produced by the three AFBR were 163,04; 136,42; 62,79 (in ml CH4 / g sCOD) for AFBR-Ni; AFBR-Zn and AFBR-control, respectively.

References

Abass, O., Alade., Ahmad, T., Jameel., Suleyman, A., Muyibi., Mohamed, I., Abdul Karim and Md. Zahangir Alam., 2011, Application of semifluidized bed bioreactor as novel bioreactor system for the treatment of palm oil mill effluent (POME), Afr. J. Biotechnol., 10(81), 18642-18648.

Ahmad, A.L., Sumathi, S., and Hameed, B.H., 2005, Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies, Water Res., 39, 2483–2494.

Borja, R., and Banks, C. J., 1994, Treatment of palm oil mill effluent by upflow anaerobic filtration, J. Chem. Tech. Biotechnol., 61(2), 103-109.

Chernicaro, C. A. L., 2007, Biological Wastewater Treatment Series : Anaerobic Reactors, IWA publishing, London.

Chusna, F.M.A., Mellyanawaty, M., Cahyono, R.B., and Budhijanto, W., 2018, Cation modifcation of zeolite as microbial immobilization media in anaerobic digestion process of palm oil mill efuent (POME), Proceeding of SEATUC, pp. 616–621.

Deublein, D.., 2008, Biogas from Waste and Renewable Resources, Wiley-VCH Verlag GmbH and Co. KGaA., Germany.

Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., and Bolzonella, D, 2013. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials : The influence of inoculum origin, Biochem. Eng. J., 70, 71–77.

Irvan, B., Batubara, F., and Daimon, H., 2018, The minimum requirements for nickel and cobalt as trace metals in thermophilic biogas fermentation of palm oil mill efuents, Oriental J. Chem., 34 (3), 1278–1282.

Izzah, N., Aziz, H. A., and Hanafiah, M. M., 2018, Test anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test, AIP Conference Proceedings, 1940.

Lee, D., Lee, S., Bae, J., Kang, J., Kim, K., Rhee, S., Park, J., Cho, J., Chung, J., Seo, D., 2015, Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea., Journal of Chemistry, 2015, 1–8.

Mellyanawaty, M., Chusna, F.M.A., Sudibyo, H., Nurjanah, N. and Budhijanto, W., 2018, Influence of nutrient impregnated into zeolite addition on anaerobic digestion of palm oil mill effluent (POME), IOP Conf. Ser. Mater. Sci. Eng., 316 (1).

Mellyanawaty, M., Chusna, F.M.A., Nofiyanti, E. and Budhijanto, W., 2019, proses peruraian anaerobik palm oil mill effluent dengan media zeolit termodifikasi, Jurnal Rekayasa Proses, 13 (1), 16–23.

Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., and De, M. A., 2012, Applied Clay Science Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci., 58, 125–133.

Azis, M.,. Sudibyo, H., and Budhijanto W., 2018, Modeling lab-sized anaerobic fluidized bed reactor (AFBR) for palm oil mill effluent (POME) treatment: from batch to continuous reactors, IOP Conf. Ser. Mater. Sci. Eng., 316, 012072.

Ohimain, E.I., and Izah, S.C., 2014, Potential of biogas production from palm oil mills' effluent in Nigeria. Sky J. Soil. Sci. Environ. Manag., 3(5), 50–58.

Poh, P.E., and Chong, M.F., 2009, Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment, Bioresour. Technol., 100, 1–9.

Purnomo, C.W., Mellyanawaty, M. and Budhijanto, W., 2017, Simulation and experimental study on iron impregnated microbial immobilization in zeolite for production of biogas, Waste and Biomass Valorization, 8 (7), 2413-2421.

Setyowati, P.A.H., Halim, L., Mellyanawaty, M., Sudibyo, H., and Budhijanto, W., 2017, Anaerobic treatment of palm oil mill efuent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization, AIP Conference Proceedings, 1840.

Sumathi, S., Chai, S. P., and Mohamed, A. R., 2008, Utilization of oil palm as a source of renewable energy in Malaysia, Renewable and Sustainable Energy Rev., 12(9), 2404–2421.

Walker, M., Zhang, Y., Heaven, S., and Banks, C., 2009, Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes, Bioresour. Technol.,100, 6339-6346.

Zandvoort, M.H., and Van Hullesbuch, E.D., 2006, Granular sludge in full scale anaerobic bioreactor : trace element content and deficiencer, Enzyme Microb. Technol., 39(2), 337-346.