Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 13 No 2 (2019): Volume 13, Number 2, 2019

Pengaruh proses swelling dengan supercritical gas CO2 terhadap penurunan energi ikatan senyawa hidrokarbon vacuum residue

DOI
https://doi.org/10.22146/jrekpros.44784
Submitted
November 16, 2023
Published
December 31, 2019

Abstract

The present study aims to develop technology to utilize a vacuum residue by reducing its density, viscosity and energy bonding, using a batch reactor equipped with CO2 injection gas in the form of a swelling process. The study was conducted by applying temperature varied between 60 and 100 °C and CO2 flux pressure varied between 1 and 5 MPa, respectively. The study of applying temperature and CO2 flux pressure are used to decrease the bond energy of hydrocarbon compounds in the form of solid vacuum residue. Furthermore, a series of reaction time was carried out started in the range of 10-30 minutes to obtain the optimum reaction time. The result showed that at temperature of 100°C, pressure of 5 MPa and variation of time, the density, viscosity, and  decrease in energy bonding (ΔG) were in the range of 0.919-0.902 g/cm3, 495-166 cSt, and 8.627–6.436 J.s, respectively.

References

  1. Abedini, A., Mosavat, N., Torabi, F., 2014, Determination of minimum miscibility pressure of crude oil – CO2 system by oil swelling/extraction test, Energy Technol., 2, 431 – 439.
  2. Alam, Md. S., Ashokkumar, A. B., Siddiq, M., 2019, The density, dynamic viscosity and kinematic viscosity of protic and aprotic polar solvent (pure and mixed) systems: An experimental and theoretical insight of thermophysical properties, J. Mol. Liq., 18, 322 - 350.
  3. Jechura, J, 2018, Refinery Feedstocks & Products Properties & Specification. https://inside. mines.edu/~jjechura/Refining/02_Feedstocks_ &_Products.pdf
  4. Huy, N. C., Shin, W. E., 2015, Hierarchical macro–mesoporous Al2O3-supported NiK catalyst for steam catalytic cracking of vacuum residue, Fuel, 169, 1 – 6
  5. Noroodin, NSM., Salleh, LM., Hartati, M, NM., 2017, Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds, Materials Science of Engineering, 162, 1757 – 899X.
  6. Sorenssen, M, A., 2013, Chemical Potential and Gibbs Distribution. https://www.uio.no/ studier/emner/matnat/fys/FYS2160/h13/book/ thermal-lecture-07.pdf
  7. Sotelo, D., Contreras, F. A., Sotelo, C., Jimenez, G., Canales. C. L., 2017, Design and implementation of a control structures for quality products in crude oil atmospheric distillation column, ISA Transaction, 17, 10 - 16
  8. Stratiev, D., Nedelchev, A., Shishkova, I., Ivanov, A., Sharafutdinov, I., Nikolova, R., Mitkova, M., Yordanov, D., Rudnev, N., Belchev, Z., Atanassova, V., Atanassov, K., 2015, Dependence of visbroken residue viscosity and vacuum residue conversion in a commercial visbreaker unit on feedstock quality, Fuel Process. Technol., 138, 595 - 604.