Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 10 No 2 (2016): Volume 10, Number 2, 2016

Produksi organic preservative dan solid biofuel dari hydrothermal treatment tongkol jagung dengan variasi temperatur

DOI
https://doi.org/10.22146/jrekpros.33338
Submitted
November 16, 2023
Published
December 31, 2016

Abstract

Corn is one of staple food and influential commodity driving Indonesia’s economy. Indonesia currently produces as high as 19 million tons of corn which contains 50% of biomass in the form of cob. Waste from harvesting and consumption of corn, namely, corn cob (CC) is left as waste. This CC is actually a sustainable, easily accessible, and renewable biomass energy source as an alternative to Indonesia’s depleting fossil fuel reserves. Hydrothermal treatment is a conversion method that has some consequential advantages compared to other methods; e.g. the ability to treat high-moisture biomass like CC and the possibility to use lower temperature. This research aims to produce and characterize liquid and solid fuel subsequent to hydrothermal treatment of CC obtained from Sleman, Yogyakarta. After size reduction, fine particles were mixed with water to form slurry. Slurry was heated in an autoclave for hydrothermal treatment at initial pressure of 2.0 MPa and was held for 200 °C, 240 °C, and 270 °C in 30 minutes. The solid and liquid products were then separated. Liquid was analyzed using GC-MS and solid by using AAS. The result showed that, in comparison to raw material, solid product had higher carbon content which resulted in the increase of calorific value of the solid biofuel. The calorific value of solid product ranged from 19,59 -22,02 MJ/kg or 20,93-35,87% higher than raw materials and 4-17% higher than average coal used in Indonesia. Major component in liquid product are N, N-dimethyl formamide, furfural, and phenolic compound, with benzoic acid present as minor component. The potential of liquid products as organic preservatives are examined by testing the tenacity of wood against termite according to ASTM D3345-74 standard method. Result showed that liquid product were effective in exhibiting termiticidal activity and temperature 200 °C showed the optimum condition.

References

  1. Agata, G.A., 2016. Naskah Seminar: Pengaruh Suhu pada Proses Upgrading Berbagai Jenis Biomassa dengan Hydrothermal Treatment. Departemen Teknik Kimia, Universitas Gadjah Mada: Yogyakarta.
  2. ASTM, 1980. Standard Test Method Laboratory Evaluation of Wood and Other Cellulosic Materials for Resistance to Termites. American Society for Testing and Material ASTM D3345-74, Philadelphia, PA.
  3. ASTM, 2013. Standard Practice for Proximate Analysis, American Society for Testing and Material ASTM D3172-12, West Conshohocken, PA.
  4. Child, M., 2014, “Industrial-Scale Hydrothermal Carbonization of Waste Sludge Materials for Fuel Produsction”, Lappeeranta University of Technology, Finlandia.
  5. Food And Agriculture Organization of The United Nations (FAO). 2010 .Global Forest Resources Assessment 2010 Country Report, Forest Resources Divison.FAO, Roma, Italia.
  6. Grover, P.D. & Mishra, S.K., 1996. Regional Wood Energy Development Programme In Asia Gcp / Ras / 154 / Net Biomass Briquetting : Technology And Practices. (46).
  7. International Energy Agency, 2016. World Energy Outlook. OCED, Paris.
  8. Kalderis, D. dkk, 2014. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth, 5(1), pp.477–483.
  9. Obernberger, I., Brunner, T. and Bärnthaler, G., 2006. Chemical properties of solid biofuels – significance and impact. Biomass Bioenergy, 30(11), pp.973–982.
  10. Richana, N.U.R., 2010. Saccharification Of Corncob Using Cellulolytic Bacteria For Bioethanol Production. , 17(2), pp.105–114.
  11. Sadaka, S., 2010. Gasification, Producer Gas, and Syngas. Agricultural and Natural Resources, University of Ankansas, USA.
  12. Yatagai M. et.al, 2004. Termiticidal activity of wood vinegar, its components and their homologues. J Wood Sci2002;48: 338-342.
  13. Yuliansyah, A.T. et al., 2010. Production of Solid Biofuel from Agricultural Wastes of the Palm Oil Industry by Hydrothermal Treatment. Waste and Biomass Valorization, 1(4), pp.395–405.
  14. Yuniningsih, S., 2014. Utilization of Various Types of Agricultural Waste Became Liquid Smoke using Pyrolysis Process., 28, pp.60– 66.