Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 11 No 1 (2017): Volume 11, Number 1, 2017

Pengaruh rasio doxorubisin: Apoferritin terhadap kapasitas dan efisiensi enkapsulasi doksorubisin dalam apoferritin

DOI
https://doi.org/10.22146/jrekpros.24868
Submitted
November 14, 2023
Published
June 30, 2017

Abstract

Doxorubicin is a chemotherapy drug which is very toxic and causes many side effects. To reduce side effects, doxorubicin can be encapsulated by apoferritin into apoferritin doxorubicin (Apo-Dox) system. In this research, various mass of doxorubicin i.e. 0.17 mg (S1), 0.26 mg (S2), 0.35 mg (S3), and 0.52 mg (S4) were encapsulated with 21.50 mg apoferritin. Encapsulation process was carried out by lowering pH medium for apoferritin dis-assembly, doxorubicin addition and dialysis for gradual and controlled pH-increase of medium to support re-assembly of apoferritin and doxorubicin encapsulation. End-result samples were then centrifuged and washed to separate the unreacted doxorubicin and apoferritin’s subunits. Doxorubicin encapsulation efficiency was determined using microplate reader spectrophotometry. The highest encapsulation capasity was 3.87 g dox/mg apo for S4 samples. Increasing the weight of doxorubicin gives more significant effect on increasing the reactive weight of apoferritin, which reached 93.73% (S4 sample). Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis confirm that apoferritin is in the Apo-Dox sample.

References

Carvalho, C., Santos, R., Cardoso, S., Correia, S., Oliveira, P., Santos, M., & Moreira, P., 2009. "Doxorubicin: The Good, the Bad and the Ugly Effect." Current Medicinal Chemistry, 16(25), 3267–3285.

Crichton, R., 2009. "Iron Metabolism-From Molecular Mechanisms to Clinical Consequences (Third Edition)." John Wiley and Sons, Ltd., Singapore.

Crichton, R. R., Millar, J. a, Cumming, R. L., & Bryce, C. F. (1973). "The organ-specificity of ferritin in human and horse liver and spleen." The Biochemical Journal, 131(1), 51–9.

Dostálová, S., Konečná, R., Blažková, I., Vaculovičová, M., Kopel, P., Křížková, S., Kizek, R., 2013. "Apoferritin as A Targeted Drug Delivery System," 908–912.

Ganta, S., Devalapally, H., Shahiwala, A., & Amiji, M., 2008. "A review of stimuli-responsive nanocarriers for drug and gene delivery." Journal of Controlled Release, 126(3), 187–204.

Heger, Z., Skalickova, S., Zitka, O., Adam, V., & Kizek, R., 2014. "Apoferritin applications in nanomedicine." Nanomedicine (London, England), 9(14), 2233–45.

Kilic, M. A., Ozlu, E., & Calis, S., 2012. "A novel protein-based anticancer drug encapsulating nanosphere: Apoferritin-doxorubicin complex." Journal of Biomedical Nanotechnology, 8(3), 508–514.

Massover, W. H., 1993. "Ultrastructure of ferritin and apoferritin: A review." Micron, 24(4), 389–437.

Mohan, P., & Rapoport, N., 2011. "Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking." 4(164), 1959–1973.

Tacar, O., Sriamornsak, P., & Dass, C. R., 2012. "Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems." Journal of Pharmacy and Pharmacology, 65(2), 157–170.

Tmejova, K., Hynek, D., Kopel, P., Dostalova, S., Smerkova, K., Stanisavljevic, M., Adam, V., 2013. "Electrochemical behaviour of doxorubicin encapsulated in apoferritin." International Journal of Electrochemical Science, 8(12), 12658–12671.