Effect of Tropospheric Correction on Long Term Sentinel-1 SAR Measurement

Application to the Surface Displacement Observation along Opak Fault, Yogyakarta

  • Insan Mafaazan Teknologi Survei dan Pemetaan Dasar, Sekolah Vokasi, Universitas Gadjah Mada
  • Hidayat Panuntun Lab. Geomatika, Departemen Teknologi Kebumian, Sekolah Vokasi, Universitas Gadjah Mada
Keywords: InSAR, Unwrapped Interferogram, GACOS, LiCSBAS, OPAK Fault

Abstract

Sentinel-1 is a remote sensing satellite launched by the European Space Agency (ESA). It is equipped with a radar system that can take measurements over a wide area with high accuracy (cm-mm) and long-term observations. However, one of the main factors affecting long-term SAR measurements’ accuracy is the presence of tropospheric layers within the atmosphere. To determine how much influence this tropospheric effect has, two processing scenarios are performed, namely with and without tropospheric correction, respectively. LiCSBAS is used to perform processing with the time series analysis method. This project uses interferogram data from the Sentinel-1 SAR image with temporal ranging from 2015 to 2023. The research location is in Yogyakarta. Noise due to the presence of tropospheric layer was modeled and removed using Generic Atmospheric Correction Online Service (GACOS). The results show that tropospheric correction can improve the results by reducing the standard deviation in the interferogram phase up to 40%. Based on the results, without tropospheric correction, the maximum vertical displacement is 32.64 mm. With tropospheric correction, the maximum vertical displacement is 34.58 mm. The result suggests that noise from the tropospheric layer might underestimate the vertical displacement. Hence, applying the correction, especially for long-term InSAR measurement, is important.

References

Attema E, Davidson M, Snoeij P, Rommen B, Floury N Sentinel-1 mission overview. In: 2009 IEEE International Geoscience and Remote Sensing Symposium, 12-17 July 2009 2009. pp I-36-I-39. doi:10.1109/IGARSS.2009.5416921

Bekaert DPS, Walters RJ, Wright TJ, Hooper AJ, Parker DJ (2015) Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment 170:40-47. doi:https://doi.org/10.1016/j.rse.2015.08.035

Biggs J, Wright T, Lu Z, Parsons B (2007) Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International 170 (3):1165-1179. doi:https://doi.org/10.1111/j.1365-246X.2007.03415.x

Fuhrmann T, Garthwaite MC (2019) Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sensing 11 (3):241. doi:10.3390/rs11030241

Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514-517:1-13. doi:https://doi.org/10.1016/j.tecto.2011.10.013

Kirui PKe, Reinosch E, Isya N, Riedel B, Gerke M (2021) Mitigation of Atmospheric Artefacts in Multi Temporal InSAR: A Review. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science. doi:10.1007/s41064-021-00138-z

Lazecký M, Spaans K, González PJ, Maghsoudi Y, Morishita Y, Albino F, Elliott J, Greenall N, Hatton E, Hooper A, Juncu D, McDougall A, Walters RJ, Watson CS, Weiss JR, Wright TJ (2020) LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity. Remote Sensing 12 (15). doi:10.3390/rs12152430

Morishita Y, Lazecky M, Wright TJ, Weiss JR, Elliott JR, Hooper A (2020) LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sensing 12 (3):424

Panuntun H, Heliani LS, Suryanto W, Pratama C (2022) Importance of Tropospheric Correction to C-band InSAR Measurements: Application in the 2018 Palu Earthquake. Indonesian Journal of Geography 50 (3):207-213. doi:10.22146/ijg.68984

Schmidt DA, Bürgmann R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth 108 (B9). doi:https://doi.org/10.1029/2002JB002267

Watson AR, Elliott JR, Walters RJ (2022) Interseismic Strain Accumulation Across the Main Recent Fault, SW Iran, From Sentinel-1 InSAR Observations. Journal of Geophysical Research: Solid Earth 127 (2):e2021JB022674. doi:https://doi.org/10.1029/2021JB022674

Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems 20 (11):5556-5564. doi:10.1029/2019GC008515

Widjajanti N, Pratama C, Parseno, Sunantyo TA, Heliani LS, Ma'ruf B, Atunggal D, Lestari D, Ulinnuha H, Pinasti A, Ummi RF (2020) Present-day crustal deformation revealed active tectonics in Yogyakarta, Indonesia inferred from GPS observations. Geodesy and Geodynamics 11 (2):135-142. doi:https://doi.org/10.1016/j.geog.2020.02.001

Xiao R, Yu C, Li Z, He X (2021) Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. International Journal of Applied Earth Observation and Geoinformation 96:102289. doi:https://doi.org/10.1016/j.jag.2020.102289

Xu P (2009) Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems. Geophysical Journal International 179 (1):182-200. doi:10.1111/j.1365-246X.2009.04280.x

Xue F, Lv X, Dou F, Yun Y (2020) A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geoscience and Remote Sensing Magazine 8 (1):22-42. doi:10.1109/MGRS.2019.2956165

Yu C, Li Z, Chen J, Hu J-C (2018a) Small Magnitude Co-Seismic Deformation of the 2017 Mw 6.4 Nyingchi Earthquake Revealed by InSAR Measurements with Atmospheric Correction. Remote Sensing 10 (5):684

Yu C, Li Z, Penna NT, Crippa P (2018b) Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth 123 (10):9202-9222. doi:https://doi.org/10.1029/2017JB015305

Yu Y, Li Q, Xu Z, Lü Q, Zhan W, Yao X (2024) An Evaluation of Tropospheric Correction Models for InSAR in Ground Deformation Monitoring: A Case Study in Zhejiang Province, China. Sustainability 16 (11). doi:10.3390/su16114349

Yunjun Z, Fattahi H, Amelung F (2019) Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences 133:104331. doi:https://doi.org/10.1016/j.cageo.2019.104331

Zhang L, Dong J, Zhang L, Wang Y, Tang W, Liao M (2022) Adaptive Fusion of Multi-Source Tropospheric Delay Estimates for InSAR Deformation Measurements. Frontiers in Environmental Science 10. doi:10.3389/fenvs.2022.859363

Zhou X, Chang N-B, Li S (2009) Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors (Basel, Switzerland) 9 (3):1876-1912. doi:10.3390/s90301876

Published
2024-12-31
How to Cite
Insan Mafaazan, & Panuntun, H. (2024). Effect of Tropospheric Correction on Long Term Sentinel-1 SAR Measurement. Journal of Geospatial Science and Technology, 2(2), 26-34. https://doi.org/10.22146/jgst.v2i2.17064