Potential active compounds of Streptomyces sennicomposti GMY01 for antiplasmodial and antiSARS-CoV-2 revealed by targeted metabolomic and molecular docking
Abstract
Streptomyces sennicomposti GMY01 is a bacterium with huge biotechnological potential that revealed by genome mining analysis. This research aimed to investigate the potential compounds as antiplasmodial and the antiSARS-CoV-2 from the S. sennicomposti GMY01 using targeted metabolomic and in silico molecular docking. The crude extract was obtained by extraction of supernatant from fermentation product of the S. sennicomposti GMY01. The secondary metabolite profiling was obtained by using ultra-high-performance liquid chromatography (UHPLC) coupled to targeted high-performance mass spectrometry (HRMS) based on genome mining data of whole genome sequence (WGS). In silico molecular docking was performed on important target protein of P. falciparum i.e. glutathione reductase (PfGR), lactate dehydrogenase (PfLDH), phosphoethanolamine methyltransferase (Pfpmt), erythrocyte membrane protein 1 (PfEMP1) and glutathione-S-transferase (PfGST); and of SARS-CoV-2 proteins i.e. protease domain, spike glycoprotein, receptor-binding domain angiotensin-converting enzyme 2 (RBD-ACE2), 3-chymotrypsin-like protease (3CLpro), and RNA-dependent RNA polymerase (RdRp). One compound from S. sennicomposti GMY01 extract, albaflavenone was confirmed by targeted LC-HRMS. On molecular docking analysis, albaflavenone showed higher affinity than chloroquine as antiplasmodial drug and exhibited same affinity to remdesivir as antiSARS-CoV-2. Stertomyces sennicomposti GMY01 has promising biotechnological potential for drug development as antiplasmodial and anti-SARS-CoV-2 agent. Further study is needed, especially regarding in vitro testing of albaflavenone as antiplasmodial and antiSARS-CoV2.
References
Worldometer (2024) COVID-19 CORONAVIRUS PANDEMIC. https://www.worldometers.info/coronavirus/
Liang X, Yang C. Full Spectrum of Cancer Patients in SARS-CoV-2 Infection Still Being Described. Clin Oncol (R Coll Radiol) 2020; 32(6):407.
https://doi.org/10.1016/j.clon.2020.03.016
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Napoli RD. Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls [Internet]. Treasure Island(FL): StatPearls Publising 2024 Jan. 1-49
Congo C, Valley NR, Page J. WHO R & D Blueprint 2016. 1–5
World Health Organization. R & D Blueprint and COVID-19. In: World Heal. Organ. - WHO Web Site 2020.
Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol 2020; 15(4):247-9.
https://doi.org/10.1038/s41565-020-0674-9
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3):269-71. https://doi.org/10.1038/s41422-020-0282-0
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6:16.
https://doi.org/10.1038/s41421-020-0156-0
Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCovid-19 Study). medRxiv 2020.
https://doi.org/10.1101/2020.04.07.20056424
World Health Organization (2024) COVID-19 epidemiological update.
https://www.who.int/publications/m/item/covid-19-epidemiological-update-16-february-2024
Hall Jr DC, Ji HF. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis 2020; 35:101646.
https://doi.org/10.1016/j.tmaid.2020.101646
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9):1141-9.
https://doi.org/10.1038/s41401-020-0485-4
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807):215-20.
https://doi.org/10.1038/s41586-020-2180-5
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5):766-88.
https://doi.org/10.1016/j.apsb.2020.02.008
Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmacuetical Analysis 2020; 10(4).
https://doi.org/10.1016/j.jpha.2020.04.008
Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, et al. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1):15-26.
https://doi.org/10.1016/j.tibtech.2014.10.009
Widada J, Damayanti E, Mustofa, Dinoto A, Febriansah R Hertiani T. Marine-derived Streptomyces sennicomposti GMY01 with antiplasmodial and anticancer activities: genome analysis, in vitro bioassay, metabolite profiling, and molecular docking. Microorganisms 2023; 11(8):1930.
https://doi.org/10.3390/microorganisms11081930
Damayanti E, Widada J, Lotulung PDN, Dinoto A, Mustofa. Bioassay guided fractionation of marine Streptomyces sp. GMY01 and antiplasmodial assay using microscopic and flow cytometry method. Indones J Pharm 2020; 31(4):281-9.
https://doi.org/10.22146/ijp.809
Widada J, Damayanti E, Herdini C, Wijayanti N, Hosoyama A, Yamazoe A, et al. Draft genome sequence of the marine-derived, anticancer compound-producing bacterium Streptomyces sp. atrain GMY01. Microbiol Resour Announc 2023; 12(6):e0136620.
https://doi.org/10.1128/mra.01366-20
Li H, Yang L, Liu FF, Ma XN, He PL, Tang W, et al. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol Sin 2020; 41(9):1133-40.
https://doi.org/10.1038/s41401-020-0438-y
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: an evaluation of the evidence. Travel Med Infect Dis 2020; 35:101647.
https://doi.org/10.1016/j.tmaid.2020.101647
Gendrot M, Andreani J, Boxberger M, Jardot P, Fonta I, Bideau ML, et al. Antimalarial drugs inhibit the replication of SARS-CoV-2: an in vitro evaluation. Travel Med Infect Dis 2020; 37:101873.
https://doi.org/10.1016/j.tmaid.2020.101873
Melinda YN, Widada J, Wahyuningsih TD, Febriansah R, Damayanti E, Mustofa. Metabologenomics approach to the discovery of novel compounds from Streptomyces sp. GMR22 as anti-SARS-CoV-2 drugs. Heliyon 2021; 7(11):e08308.
https://doi.org/10.1016/j.heliyon.2021.e08308
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2):455-61.
https://doi.org/10.1002/jcc.21334
Studio D. Dassault systemes BIOVIA, discovery studio modelling environment, release 4.5. Accelrys Softw Inc. 2015.
Herdini C, Hartanto S, Mubarika S, Hariwiyanto B, Wijayanti N, Hosoyama A, et al. Diversity of nonribosomal peptide synthetase genes in the anticancerproducing actinomycetes isolated from marine sediment in Indonesia. Indones J Biotechnol 20(11):34-41.
https://doi.org/10.22146/ijbiotech.15266
Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myoronovskyi M, et al. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci Rep 2017; 7:42382.
https://doi.org/10.1038/srep42382
Farida Y, Widada J, Meiyanto E. Combination methods for screening marine actinomycetes producing potential compounds as anticancer. Indones J Biotechnol 2010; 122:988-97.
https://doi.org/10.22146/ijbiotech.7772
Zhao B, Lin X, Lei L, amb DC, Kelly SL, Waterman MR, et al. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 2008; 283(13):8183-9.
https://doi.org/10.1074/jbc.M710421200
Lin X, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in streptomyces coelicolor. mechanism and stereochemistry of the enzymatic formation of epi-isozizaene. J Am Chem Soc 2019; 131(18):6332-3.
https://doi.org/10.1021/ja901313v
Challis GL. Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new products and biosynthetic pathways. J Ind Microbiol Biotechnol 2014; 41(2):219-32.
https://doi.org/10.1007/s10295-013-1383-2
Müller S. Role and regulation of glutathione metabolism in plasmodium falciparum. Molecules 2015; 20(6):10511-34.
https://doi.org/10.3390/molecules200610511
Güller P. The in vitro and in silico inhibition mechanism of glutathione reductase by resorcinol derivatives: a molecular docking study. J Mol Struct 2021; 1228:129790.
https://doi.org/10.1016/j.molstruc.2020.129790
Adams Y, Olsen RW, Bengtsson A, Dalgaar N, Zdioruk M, Satpathi S, et al. Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood-brain barrier in cerebral malaria. J Exp Med 2021; 218(3):e20201266.