Clinically significant of drug-drug interactions among children: a review

  • Firda Ridhayani Master of Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
  • Ika Puspita Sari Master of Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta/Academic Hospital Universitas Gadjah Mada, Yogyakarta
  • Tri Murti Andayani Master of Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
Keywords: adverse drug event, children, drug interaction, pharmacodynamics, pharmacokinetics

Abstract

Drug-drug interactions among children are a getting along concern in health care settings, specifically intensive care units, as sources of adverse drug events that may affect patient condition. Children admitted to pediatric intensive care unit are more prone to drug-drug interactions owing to the diseases and medications complexity. This condition could put the patient at high risk of harm, particularly with his critical condition, so need intense considerations from clinical practitioners to prevent adverse drug events caused by potential drug-drug interactions. This article’s review attempts to explore the important drug-drug interactions among children, including explaining the drug combination, mechanism, and related adverse drug events to help health practitioners recognize it earlier before prescribing the medication. This article’s review explored previous research results from PubMed and Google Scholar as literature resources and PRISMA flow chart as protocol for article selection process. A total of 9 articles discussed comprehensively about the type of drug combinations, mechanism of drug-drug interactions, and associated adverse drug events with significant drug-drug interactions that commonly occurred in children’s patient during the treatment. The drug-drug interaction including midazolam-phenobarbital, cannabidiol-clobazam, Paxlovid-tacrolimus, inhaled fluticasone propionate-lopinavir/ritonavir, rifampicin-warfarin, clofazimine-moxifloxacin, benzatropine-haloperidol, and enalapril-spironolactone. In conclusion, gaining a better understanding of drug-drug interactions among children will empower healthcare professionals to develop useful strategies to recognize, manage, and prevent various types of pharmacokinetic and pharmacodynamic interactions. Especially at different stages in terms of age, physiology, and complexity of the disease in children.

References

Hughes JE, Waldron C, Bennett KE, Cahir C. Prevalence of drug–drug interactions in older community-dwelling individuals: a systematic review and meta-analysis. Drugs Aging 2023; 40(2):117-34.

https://doi.org/10.1007/s40266-022-01001-5

Tsui VW, Thomas D, Tian S, Vaida AJ. Adverse drug events, medication errors, and drug interactions. InClinical Pharmacy Education, Practice and Research 2019. Elsevier 2018; p.227-45.

https://doi.org/10.1016/B978-0-12-814276-9.00016-7

Ataei S, Jabbari M, Mehrpooya M, Taher A, Poorolajal J, Keramat F. Drug interactions among hospitalized patients in intensive care units and infectious ward, Hamadan, Iran. Avicenna J Clin Microbiol Infect 2018; 5(3):46-51.

https://doi.org/10.34172/ajcmi.2018.09

de Oliveira LM, Diel JAC, Nunes A, Pizzol TSD. Prevalence of drug interactions in hospitalised elderly patients: a systematic review. Eur J Hosp Pharm 2021; 28(1):4-9.

https://doi.org/10.1136/ejhpharm-2019-002111

Bakker T, Abu-Hanna A, Dongelmans DA, Vermeijden WJ, Bosman RJ, de Lange DW, et al. Clinically relevant potential drug-drug interactions in intensive care patients: A large retrospective observational multicenter study. J Crit Care 2021; 62:124-30.

https://doi.org/10.1016/j.jcrc.2020.11.020

Janković SM, Pejčić AV, Milosavljević MN, Opančina VD, Pešić NV, Nedeljković TT, et al. Risk factors for potential drug-drug interactions in intensive care unit patients. J Crit Care 2018; 43:1-6.

https://doi.org/10.1016/j.jcrc.2017.08.021

Hanks F, Philips B, Barton G, Hakes L, McKenzie C. How critical illness impacts drug pharmacokinetics and pharmacodynamics. The Pharmaceutical Journal 2022.

Fitzmaurice MG, Wong A, Akerberg H, Avramovska S, Smithburger PL, Buckley MS, et al. Evaluation of potential drug–drug interactions in adults in the intensive care unit: a systematic review and meta-analysis. Drug Saf 2019; 42(9):1035-44.

https://doi.org/10.1007/s40264-019-00829-y

Lima EC, Camarinha BD, Ferreira Bezerra NC, Panisset AG, Belmino de Souza R, Silva MT, et al. Severe potential drug-drug interactions and the increased length of stay of children in intensive care unit. Front Pharmacol 2020; 11:555407.

https://doi.org/10.3389/fphar.2020.555407

Karalliedde LD, Clarke S, Gotel U, Karalleidde J. Adverse drug interactions a handbook for prescribers. Second edition. Boca Raton: CRC Press Taylor & Francis Group; 2016.

Baniasadi S, Farzanegan B, Alehashem M. Important drug classes associated with potential drug–drug interactions in critically ill patients: highlights for cardiothoracic intensivists. Ann Intensive Care 2015; 5(1):44.

https://doi.org/10.1186/s13613-015-0086-4

Dagdelen MS, Gulen D, Ceylan I, Girgin NK. Evaluation of potential drug-drug interactions in intensive care unit. Eur Rev Med Pharmacol Sci 2021; 25(18):5801-6.

https://doi.org/10.26355/eurrev_202109_26798

Rodrigues A, Stahlschmidt R, Granja S, Pilger D, Falcão AE, Mazzola P. Prevalence of potential drug-drug interactions in the intensive care unit of a Brazilian teaching hospital. Braz J Pharm Sci 2017; 53(1):1-8.

https://doi.org/10.1590/s2175-97902017000116109

Bakker T, Klopotowska JE, Eslami S, de Lange DW, van Marum R, van der Sijs H, et al. The effect of ICU-tailored drug-drug interaction alerts on medication prescribing and monitoring: protocol for a cluster randomized stepped-wedge trial. BMC Med Inform Decis Mak 2019; 19(1):159.

https://doi.org/10.1186/s12911-019-0888-7

Favié LMA, Groenendaal F, van den Broek MPH, Rademaker CMA, de Haan TR, van Straaten HLM, et al. Phenobarbital, midazolam pharmacokinetics, effectiveness, and drug-drug interaction in asphyxiated neonates undergoing therapeutic hypothermia. Neonatology 2019; 116(2):154-62.

https://doi.org/10.1159/000499330

Wheless JW, Dlugos D, Miller I, Oh DA, Parikh N, Phillips S, et al. Pharmacokinetics and tolerability of multiple doses of pharmaceutical-grade synthetic cannabidiol in pediatric patients with treatment-resistant epilepsy. CNS Drugs 2019; 33(6):593-604.

https://doi.org/10.1007/s40263-019-00624-4

Young C, Papiro T, Greenberg JH. Elevated tacrolimus levels after treatment with nirmatrelvir/ritonavir (Paxlovid) for COVID-19 infection in a child with a kidney transplant. Pediatr Nephrol 2023; 38(4):1387-8.

https://doi.org/10.1007/s00467-022-05712-0

Castro-Moraga ME, Campos LA, Figueroa VC, Yizmeyián MA, Piñera MC. Drug interactions in HIV-infected children undergoing treatment with antiretrovirals. Andes Pediatr 2021; 92(3):446-54.

https://doi.org/ 0.32641/andespediatr.v92i3.3321

Mito A, Hirono K, Ide H, Ozawa S, Ichida F, Taguchi M. Effects of concomitant administration of PXR ligand drugs on the anticoagulant effects of warfarin. Biol Pharm Bull 2022; 45(6):703-8.

https://doi.org/10.1248/bpb.b21-00853

Poon M, Moffett BS, Yee DL. Warfarin-rifampin drug interaction in a pediatric patient. J Pediatr Pharmacol Ther 2017; 22(5):375-7.

https://doi.org/10.5863/1551-6776-22.5.375

Ali AM, Radtke KK, Hesseling AC, Winckler J, Schaaf HS, Draper HR, et al. QT interval prolongation with one or more qt-prolonging agents used as part of a multidrug regimen for rifampicin-resistant tuberculosis treatment: findings from two pediatric studies. Antimicrob Agents Chemother 2023; 67(7):e0144822.

https://doi.org/10.1128/aac.01448-22

Nkansah-Amankra K, Sudhanthar S. Medication-induced obstructive uropathy and hyperprolactinemia in a pediatric patient. Clin Case Rep 2019; 7(10):1928-31.

https://doi.org/10.1002/ccr3.2396

Choi YH, Lee IH, Yang M, Cho YS, Jo YH, Bae HJ, et al. Clinical significance of potential drug–drug interactions in a pediatric intensive care unit: a single-center retrospective study. PLoS One 2021; 16(2):e0246754.

https://doi.org/10.1371/journal.pone.0246754

Salem F, Rostami-Hodjegan A, Johnson TN. Do children have the same vulnerability to metabolic drug–drug interactions as adults? A critical analysis of the literature. J Clin Pharmacol 2013; 53(5):559-66.

https://doi.org/10.1002/jcph.13

Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 2011; 3(1):53-72.

https://doi.org/10.3390/pharmaceutics3010053

Gobezie MY, Bitew HB, Tuha A, Hailu HG. Assessment of potential drug-drug interactions and their predictors in chronic outpatient department of dessie referral hospital, dessie, northeast ethiopia. Drug Healthc Patient Saf 2021; 13:29-35.

https://doi.org/10.2147/DHPS.S279371

Šíma M, Michaličková D, Slanař O. What is the best predictor of phenobarbital pharmacokinetics to use for initial dosing in neonates? Pharmaceutics 2021; 13(3):301.

https://doi.org/ 10.3390/pharmaceutics13030301

van den Broek MPH, van Straaten HLM, Huitema ADR, Egberts T, Toet MC, de Vries LS, et al. Anticonvulsant effectiveness and hemodynamic safety of midazolam in full-term infants treated with hypothermia. Neonatology 2015; 107(2):150-6.

https://doi.org/10.1159/000368180

Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia 2015; 56(8):1246-51.

https://doi.org/10.1111/epi.13060

VanLandingham KE, Crockett J, Taylor L, Morrison G. A phase 2, double‐blind, placebo‐controlled trial to investigate potential drug‐drug interactions between cannabidiol and clobazam. J Clin Pharmacol 2020; 60(10):1304-13.

https://doi.org/10.1002/jcph.1634

Gauthier AC, Mattson RH. Clobazam: A Safe, Efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neurosci Ther 2015; 21(7):543-8.

https://doi.org/10.1111/cns.12399

Katzenmaier S, Markert C, Riedel KD, Burhenne J, Haefeli WE, Mikus G. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin Pharmacol Ther 2011; 90(5):666-73.

https://doi.org/10.1038/clpt.2011.164

Badri P, Dutta S, Coakley E, Cohen D, Ding B, Podsadecki T, et al. Pharmacokinetics and dose recommendations for cyclosporine and tacrolimus when coadministered with ABT-450, ombitasvir, and dasabuvir. Am J Transplant 2015; 15(5):1313-22.

https://doi.org/10.1111/ajt.13111

Jain AB, Venkataramanan R, Eghtesad B, Marcos A, Ragni M, Shapiro R, et al. Effect of coadministered lopinavir and ritonavir (Kaletra) on tacrolimus blood concentration in liver transplantation patients. Liver Transpl 2003; 9(9):954-60.

https://doi.org/10.1053/jlts.2003.50171

Zaarur L, Patel A, Pasternak B. Drug interaction between tacrolimus and paxlovid (nirmatrelvir/ritonavir) in an adolescent with inflammatory bowel disease. JPGN Rep 2023; 4(4):e352.

https://doi.org/10.1097/PG9.0000000000000352

Araujo-Castro M, Pascual-Corrales E, Lamas C. Possible, probable, and certain hypercortisolism: A continuum in the risk of comorbidity. Ann Endocrinol 2023; 84(2):272-84.

https://doi.org/10.1016/j.ando.2023.01.005

Figueiredo J, Serrado M, Khmelinskii N, Vale S do. Iatrogenic Cushing syndrome and multifocal osteonecrosis caused by the interaction between inhaled fluticasone and ritonavir. BMJ Case Reports 2020; 13(5):e233712.

https://doi.org/10.1136/bcr-2019-233712

Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, Gentile F, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021; 143(5):e72–227.

https://doi.org/10.1161/CIR.0000000000000923

Sadeghi S, Wadia S, Lluri G, Tarabay J, Fernando A, Salem M, et al. Risk factors for infective endocarditis following transcatheter pulmonary valve replacement in patients with congenital heart disease. Catheter Cardiovasc Interv 2019; 94(4):625-35.

https://doi.org/10.1002/ccd.28474

Nakagawa N. Infective endocarditis in congenital heart disease. 2022.

https://doi.org/10.5772/intechopen.107877

Vicent L, Luna R, Martínez-Sellés M. Pediatric infective endocarditis: a literature review. J Clin Med 2022; 11(11):3217.

https://doi.org/10.3390/jcm11113217

Hamberg AK, Wadelius M, Friberg LE, Biss TT, Kamali F, Jonsson EN. Characterizing variability in warfarin dose requirements in children using modelling and simulation. Br J Clin Pharmacol 2014; 78(1):158-69.

https://doi.org/10.1111/bcp.12308

Hirsh J, Fuster V, Ansell J, Halperin JL. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J Am Coll Cardiol 2003; 41(9):1633-52.

https://doi.org/10.1016/s0735-1097(03)00416-9

Radtke KK, Hesseling AC, Winckler JL, Draper HR, Solans BP, Thee S, et al. Moxifloxacin pharmacokinetics, cardiac safety, and dosing for the treatment of rifampicin-resistant tuberculosis in children. Clin Infect Dis 2021; 74(8):1372-81.

https://doi.org/10.1093/cid/ciab641

Ahuja A, Abdijadid S. Benztropine. In: StatPearls. StatPearls Publishing; 2022.

https://www.ncbi.nlm.nih.gov/books/NBK560633/

Hoffmann JA, Pergjika A, Konicek CE, Reynolds SL. Pharmacologic management of acute agitation in youth in the emergency department. Pediatr Emerg Care 2021; 37(8):417-22.

https://doi.org/10.1097/PEC.0000000000002510

Strain JJ, Chiu NM, Sultana K, Karim A, Caliendo G, Mustafa S, et al. Psychotropic drug versus psychotropic drug-update. Gen Hos Psychiatry 2004; 26(2):87-105.

https://doi.org/10.1016/j.genhosppsych.2003.10.001

Smeets NJL, Schreuder MF, Dalinghaus M, Male C, Lagler FB, Walsh J, et al. Pharmacology of enalapril in children: a review. Drug Discov Today 2020; 25(11):1957-70.

https://doi.org/10.1016/j.drudis.2020.08.005

Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, et al. Pediatric heart failure: a practical guide to diagnosis and management. Pediatr Neonatol 2017; 58(4):303-12.

https://doi.org/10.1016/j.pedneo.2017.01.001

Patibandla S, Heaton J, Kyaw H. Spironolactone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

http://www.ncbi.nlm.nih.gov/books/NBK554421/

Goyal A, Cusick AS, Thielemier B. ACE Inhibitors. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

https://www.ncbi.nlm.nih.gov/books/NBK430896/

Villa-Zapata L, Carhart BS, Horn JR, Hansten PD, Subbian V, Gephart S, et al. Serum potassium changes due to concomitant ACEI/ARB and spironolactone therapy: A systematic review and meta-analysis. Am J Health Syst Pharm 2021; 78(24):2245-55.

https://doi.org/10.1093/ajhp/zxab215

Molho A, Chadwick C, Lazner M. Hyperkalaemia management. BSUH Clin Pract Guid. 2022;

Published
2024-12-24
Section
Articles