Current progress of nanotechnology in medicine: application in drug delivery, diagnostic, tissue engineering, and nanobots

  • Febriofca Galih Yatalaththov Master in Biomedical Science, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Ahmad Ghitha Fadhlurrahman Master in Biomedical Science, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Alifia Hetifa Rahma Master in Biomedical Science, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Husna Fitri Master in Biomedical Science, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
Keywords: nanomedicine, drug delivery, diagnostic, tissue engineering, nanobot

Abstract

The integration of nanotechnology into medicine has resulted in rapid advancements, and revolutionized in the diagnosis, treatment and management of diseases. Through complex manipulation of materials at the nanoscale, nanotechnology has ushered in a new era of precision medicine. Their benefits include increasingly in earlier and more precise diagnosis, as well as in optimal treatment of diseases. This review explores the applications of nanotechnology in medicine, with a focus on drug delivery, diagnostic tools, tissue engineering, and the world of futuristic nanorobots. By investigating the complex workings of nanotechnology in medicine, we aim to highlight its innovative applications, the benefits it brings to diagnosis, and treatment, and its potential to reshape the landscape of contemporary medical practice.

References

Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 2021 ;14(1):86–93. https://doi.org/10.1111/cts.12884.

Pramanik PKD, Solanki A, Debnath A, Nayyar A, El-Sappagh S, Kwak KS. Advancing modern healthcare with nanotechnology, nanobiosensors, and internet of nano things: taxonomies, applications, architecture, and challenges. IEEE Access 2020;8:65230–66. https://doi.org/10.1109/ACCESS.2020.2984269

Sindhwani S, Chan WCW. Nanotechnology for modern medicine: next step towards clinical translation. J Intern Med 2021;290(3):486–98.

https://doi.org/10.1111.joim.13254

Wen H, Jung H, Li X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J 2015;17(6):1327-40. https://doi.org/10.1208/s12248-1015-9814-9.

Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021;63:102487. https://doi.org/10.106/j.ddst.2021.102487

Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep 2021;14(5):1–9. https://doi.org/10.3892/br.2021.1418

Yang G, Li Z, Wu F, Chen M, Wang R, Zhu H, et al. Improving solubility and bioavailability of breviscapine with mesoporous silica nanoparticles prepared using ultrasound-assisted solution-enhanced dispersion by supercritical fluids method. Int J Nanomed 2020;15: 1661–75. https://doi.org/10.2147/IJN.S238337

Peng S, Li Z, Zou L, Liu W, Liu C, McClements DJ. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct 2018;9(3):1829–39. https://doi.org/10.1039/c7fo01814b

Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, et al. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol 2021;69:190–9. https://doi.org/10.1016/j.semcancer.2019.08.028

Majumder NG, Das N, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020; 11(10):613–35. https://doi.org/10.4155/tde-2020-0008

Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric micelles for breast cancer therapy: recent updates, clinical translation and regulatory considerations. Pharmaceutics 2022;14(9): 1860.

https://doi.org/10.3390/pharmaceutics14091860

Dattani S, Li X, Lampa C, Lechuga-Ballesteros D, Barriscale A, Damadzadeh B, et al. & Jasti, B. R. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery. Int J Pharm 2023; 631: 122464. https://doi.org/10.1016/j.ijpharm.2022.122464

Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021;601:120571. https://doi.org/ 10.1016/j.ijpharm.2021.120571.

Chowdhury N, Chaudhry S, Hall N, Olverson G, Zhang QJ, Mandal T, et al. Targeted delivery of doxorubicin liposomes for HER-2+ breast cancer treatment. AAPS Pharm Sci Tech 2020;21(6):202. https://doi.org/10.1208/s12249-020-01743-8.

Huang L, Teng W, Cao J, Wang J. Liposomes as delivery system for applications in meat products. Foods 2022;11(19):3017. https://doi.org/10.3390/foods.11193017

Sharifi S, Vahed S Z, Jahangiri A. Dendrimers as drug delivery systems; the benefits and challenges. JACPM 2019; 2019; 2(2):119-23.

Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, et al. Applications and limitations of dendrimers in biomedicine. Molecules 2020;25(17):3982. https://doi.org/ 10.3390/molecules25173982.

Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014;9(1):247. htpps://doi.org/ 10.1186/1556-276X-9-247.

Yamashita S, Katsumi H, Sakane T, Yamamoto A. Bone-targeting dendrimer for the delivery of methotrexate and treatment of bone metastasis. J Drug Targett 2018; 26(9), 818–828. https://doi.org/10.1080/1061186X.2018.1434659

Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, et al. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomed 2021; 16: 1681–706. https://doi.org/10.2147/IJN.S299448

Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, et el. Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells. Materials (Basel) 2021;12(18):2889. https://doi.org/10.3390/ma12182889.

Rauf A, Abu-Izneid T, Khalil AA, Hafeez N, Olatunde A, Rahman M, et al. Nanoparticles in clinical trials of COVID-19: an update. Int J Surg (London, England) 2022: 104: 106818. https://doi.org/10.1016/j.ijsu.2022.106818

Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. J TrAC 2020;131:116013. https://doi.org/10.1016/j.trac.2020.116013

Abdellatif AAH, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomed 2022;17:1951-70. https://doi.org/10.2147/IJN.S357980

Hashemkhani M, Muti A, Sennaroğlu A, Yagci Acar H. Multimodal image-guided folic acid targeted Ag-based quantum dots for the combination of selective methotrexate delivery and photothermal therapy. J Photochem Photobiol B 2020; 213:112082. https://doi.org/10.1016/j.jphotobiol.2020.112082

Kianfar E. Magnetic Nanoparticles in targeted drug delivery: a review. J Supercond Nov Magn 2021;34(7):1709-35. https://doi.org/10.1007/s10948-021-05932-9

Kim DI, Lee H, Kwon SH, Sung YJ, Song WK, Park S. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv Healthc Mater 2020; 9(13):e2000118. https://doi.org/10.1002/adhm.202000118

Sharma A, Raghunathan K, Solhaug H, Antony J, Stenvik J, Nilsen AM, et al. Modulating acrylic acid content of nanogels for drug delivery & biocompatibility studies. J Colloid Interface Sci 2022; 607:76-88. https://doi.org/10.1016/j.jcis.2021.07.139

Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU, et al. Nanogels as drug-delivery systems: a comprehensive overview. Ther Deliv 2019; 10(11):697-717. https://doi.org/10.4155/tde-2019-0010

Mudassir J, Darwis Y, Muhamad S, Khan AA. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. Int J Nanomed 2019;14:4895-909. https://doi.org/10.2147/IJN.S199507

Wang Y, Yu L, Kong X, Sun L. Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomed 2017; 12:4789-803. https://doi.org/10.2147/IJN.S137338

Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, et al. Nanotechnology integration for SARS-CoV-2 diagnosis and treatment: an approach to preventing pandemic. Nanomaterials (Basel). 2021; 11(7):1841 https://doi.org/10.3390/nano11071841

Thwala LN, Ndlovu SC, Mpofu KT, Lugongolo MY, Mthunzi-Kufa P. Nanotechnology-based diagnostics for diseases prevalent in developing countries: current advances in point-of-care tests. Nanomaterials 2023; 13(7):1247. https://doi.org/10.3390/nano13071247

Balaconis MK, Billingsley K, Dubach MJ, Cash KJ, Clark HA. The design and development of fluorescent nano-optodes for in vivo glucose monitoring. J Diabetes Sci Technol 2011; 5(1):68-75. https://doi.org/10.1177/193229681100500110

Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev 2015;115(19):10575-636. https://doi.org/10.1021/acs.chemrev.5b00100

Gardner L, Kostarelos K, Mallick P, Dive C, Hadjidemetriou M. Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nat Rev Clin Oncol 2022;19(8):551-61. https://doi.org/10.1038/s41571-022-00645-x

Kumar J, Basak S, Kalkal A, Packirisamy G. Recent advances in nanotechnology and microfluidic-based approaches for isolation and detection of circulating tumor cells (CTCs). Nano-Struct Nano-Objects 2022; 31:100886. https://doi.org/10.1016/j.nanoso.2022.100886

Wu NJW, Aquilina M, Qian BZ, Loos R, Gonzalez-Garcia I, Santini CC, et al. The application of nanotechnology for quantification of circulating tumour dna in liquid biopsies: a systematic review. IEEE Rev Biomed Eng 2023; 16:499-513. https://doi.org/10.1109/RBME.2022.3159389

Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, et al. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 2019;126:773-84. https://doi.org/10.1016/j.bios.2018.11.026

Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, et al. Noble metal nanoparticles for biosensing applications. Sensors 2012; 12(2):1657-87. https://doi.org/10.3390/s120201657

Dessale M, Mengistu G, Mengist HM. Nanotechnology: a promising approach for cancer diagnosis, therapeutics and theragnosis. Int J Nanomedicine 2022;17:3735. https://doi.org/10.2147/IJN.S378074

Bardhan N. Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Commun 2022; 12(6):1119-39. https://doi.org/10.1557/s43579-022-00257-7

Pinals RL, Ledesma F, Yang D, Navarro N, Jeong S, Pak Jeet al. Rapid SARS-CoV-2 detection by carbon nanotube-based near-infrared nanosensors. medRxiv [Preprint]. 2020; 2020.11.02.20223404. https://doi.org/10.1101/2020.11.02.20223404

Cho SY, Jin X, Gong X, Yang S, Cui J, Strano MS. Antibody-free rapid detection of SARS-CoV-2 proteins using corona phase molecular recognition to accelerate development time. Anal Chem 2021; 93(44):14685-93. https://doi.org/10.1021/acs.analchem.1c02889

Singh A, Amiji MM. Application of nanotechnology in medical diagnosis and imaging. Curr Opin Biotechnol 2022; 74:241-6. https://doi.org/10.1016/j.copbio.2021.12.011

Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017; 5:17014. https://doi.org/10.1038/boneres.2017.14

Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, et al. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 2017; 51:75-88. https://doi.org/10.1016/j.actbio.2017.01.028

Higa K, Kitamura N, Goto K, Kurokawa T, Gong JP, Kanaya F, et al. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 2017; 18(1):210. https://doi.org/10.1186/s12891-017-1578-1

Kang ML, Jeong SY, Im GI. hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic PEGylated kartogenin for the treatment of osteoarthritis. Tissue Eng Part A. 2017; 23(13-14):630-9. https://doi.org/10.1089/ten.tea.2016.0524

Deng Z, Jin J, Wang S, Qi F, Chen X, Liu C, et al. Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering. Ann Transl Med. 2020 Dec;8(23):1598. https://doi.org/10.21037/atm-20-2342

Imashiro C, Shimizu T. Fundamental technologies and recent advances of cell-sheet-based tissue engineering. Int J Mol Sci 2021; 22(1):425. https://doi.org/10.3390/ijms22010425

Yamamoto R, Miyagawa S, Toda K, Kainuma S, Yoshioka D, Yoshikawa Y, et al. Long-Term outcome of ischemic cardiomyopathy after autologous myoblast cell-sheet implantation. Ann Thorac Surg 2019; 108(5):e303-6. https://doi.org/10.1016/j.athoracsur.2019.03.028

Roberts EG, Kleptsyn VF, Roberts GD, Mossburg KJ, Feng B, Domian IJ, et al. Development of a bio-MEMS device for electrical and mechanical conditioning and characterization of cell sheets for myocardial repair. Biotechnol Bioeng 2019; 116(11):3098-111. https://doi.org/10.1002/bit.27123

Enomoto J, Kageyama T, Myasnikova D, Onishi K, Kobayashi Y, Taruno Y, et al. Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides. J Biosci Bioeng 2018; 125(5):606-12. https://doi.org/10.1016/j.jbiosc.2017.12.014

Kim YS, Smoak MM, Melchiorri AJ, Mikos AG. An overview of the tissue engineering market in the United States from 2011 to 2018. Tissue Eng Part A 2019; 25(1-2):1-8. https://doi.org/10.1089/ten.tea.2018.0138

Cartmell SH. Regenerative Technologies: future grand challenges and emerging strategies. Front Med Technol. 2020; 2:603580. https://doi.org/10.3389/fmedt.2020.603580

Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 2015;72(3):777-82. https://doi.org/10.1007/s12013-015-0531-x

Coyle R, Jia J, Mei Y. Polymer microarray technology for stem cell engineering. Acta Biomater 2016;34:60-72. https://doi.org/10.1016/j.actbio.2015.10.030

Im GI. Tissue engineering in osteoarthritis: current status and prospect of mesenchymal stem cell therapy. BioDrugs 2018; 32(3):183-92 https://doi.org/10.1007/s40259-018-0276-3

Rahul VA. A brief review on nanorobots. SSRG-IJME. 2017; 4: 15-21. https://doi.org/10.14445/23488360/IJME-V4I8P104

Giri G, Maddahi Y, Zareinia K. A brief review on challenges in design and development of nanorobots for medical applications. Appl Sci 2021;11(21):10385. https://doi.org/10.3390/app112110385

Neto AMJC, Lopes IA, Pirota KR. A review on nanorobotics. J Comput Theor Nanosci 2010; 7(10):1870-7. https://doi.org/10.1166/jctn.2010.1552

Upadhyay VP, Sonawat M, Singh S, Merugu R. Nano robots in medicine: A review. Int. J Eng Technol Manag Res 2017; 4(12):27-37 https://doi.org/10.29121/ijetmr.v4.i12.2017.588

Sim S, Aida T. Swallowing a surgeon: toward clinical nanorobots. Acc Chem Res 2017; 50(3):492-7. https://doi.org/10.1021/acs.accounts.6b00495

Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol OncolJ Hematol Oncol 2023; 16(1):1-45. https://doi.org/10.1186/s13045-023-01463-z

Thangavel K, Balamurugan A, Elango M, Subiramaniyam P, Senrayan M. A survey on nano-robotics in nano-medicine. J NanaSci Nanotechnol 2014; 8(9):524-8.

Wang W, Zhou C. A journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the state-of-the-art. Adv Healthc Mater 2021; 10(2):2001236. https://doi.org/10.1002/adhm.202001236

Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 2020;11(1):5618. https://doi.org/10.1038/s41467-020-19322-7

Soto F, Wang J, Ahmed R, Demirci U. Medical micro/nanorobots in precision medicine. Adv Sci 2020; 7(21):2002203. https://doi.org/10.1002/advs.202002203 https://doi.org/10.1002/advs.202070117

Patel GM, Patel GC, Patel RB, Patel JK, Patel M. Nanorobot: a versatile tool in nanomedicine. J Drug Target 2006; 14(2):63-7. https://doi.org/10.1080/10611860600612862

Luo M, Feng Y, Wang T, Guan J. Micro-/nanorobots at work in active drug delivery. Adv Funct Mater 2018; 28(25):1706100. https://doi.org/10.1002/adfm.201706100

Liu D, Guo R, Wang B, Hu J, Lu Y. Magnetic micro/nanorobots: a new age in biomedicines. Adv Intell Syst 2022; 4(12):2200208. https://doi.org/10.1002/aisy.202200208

Gao W, Wang J. Synthetic micro/nanomotors in drug delivery. Nanoscale 2014; 6(18):10486-94. https://doi.org/10.1039/C4NR03124E

Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile microrobots for active therapeutic delivery. Adv Ther 2019; 2(1):1800064. https://doi.org/10.1002/adtp.201800064

Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, et al. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 2012; 8(3):460-7. https://doi.org/10.1002/smll.201101909

Park J, Jin C, Lee S, Kim J, Choi H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv Healthc Mater 2019; 8(16):1900213. https://doi.org/10.1002/adhm.201900213

Published
2024-08-01
Section
Articles