VIABILITY OF BHK-21 FIBROBLAST CELLS TOWARD ACRYLIC DENTURE BASES AFTER REINFORCED BY NATURAL FIBERS

https://doi.org/10.22146/teknosains.90278

Endang Prawesthi(1*), Marzia Magdalena Tetelepta(2), Heldayani Heldayani(3), Ria Fajarwati Kastian(4), Endah Puji Septisetyani(5)

(1) Department of Dental Technology, Politeknik Kesehatan Kemenkes Jakarta II
(2) Department of Dental Technology, Politeknik Kesehatan Kemenkes Jakarta II
(3) Department of Dental Technology, Politeknik Kesehatan Kemenkes Jakarta II
(4) Research Center for Genetic Engineering, National Research and Innovation Agency, KST (BRIN)
(5) Research Center for Genetic Engineering, National Research and Innovation Agency, KST (BRIN)
(*) Corresponding Author

Abstract


The use of acrylic denture bases in the oral cavity requires biocompatibility. This study investigated the viability of BHK-21 fibroblast cells after treatment with an acrylic denture base modified using natural fibers. Ramie and banana stem fibers were used as cost-effective alternatives to synthetic fibers. The study involved 42 acrylic resin specimens (10 mm diameter, 2 mm thickness) divided into groups: resin without fibers, 0.5%, 1.5%, and 2.5% ramie fibers, and 0.5%, 1.5%, and 2.5% banana stem fibers. The resin was incubated with cell culture media at 37°C for 7 days. Cytotoxicity testing using the MTT method revealed that all treatment groups had cell viability exceeding 70%, meeting ISO 10993-5 standards. No significant differences in cell viability were observed between the treatment groups and the control (media without specimens). Additionally, adding 0.5%, 1.5%, and 2.5% ramie fibers did not affect BHK-21 cell viability compared to the resin-only control, while adding banana stem fibers increased cell viability compared to the control (P = 0.035; P = 0.021; and P = 0.011). In conclusion, increasing the concentration of natural fibers in acrylic denture bases did not negatively impact fibroblast cell growth.


Keywords


cell viability; BHK-21 fibroblast cell; acrylic denture base; natural fiber

Full Text:

PDF


References

Alqutaibi, A. Y., Baik, A., Almuzaini, S. A., Farghal, A. E., Alnazzawi, A. A., Borzangy, S., Aboalrejal, A. N., AbdElaziz, M. H., Mahmoud, I. I., & Zafar, M. S. (2023). Polymeric Denture Base Materials: A Review. Polymers, 15(15). https://doi.org/10.3390/polym15153258

Anggraeni, F. R. (2022). Pengaruh Minyak Atsiri Sereh Dapur (Cymbopogon Citratus) Berbagai Konsentrasi Terhadap Viabilitas Sel Fibroblas Gingiva. Tesis. Naskah Publikasi, Program Study Kedokteran Gigi Anak, universitas Gadjah Mada.

Anusavice, K. J., Shen, C., & Rawls, H. R. (2013). Phillips’ Science of Dental Materials (12th ed). Elsevier Saunders. ISBN: 978-1-4377-2418-9

Apriasari, M. L., Adhani, R., & Savitri, D. (2014). Uji Sitotoksisitas Ekstrak Metanol Batang Pisang Mauli (Musa sp) terhadap Sel Fibroblas BHK (Baby Hamster Kidney) 21. Dentino (Jurnal Kedokteran Gigi), 2(2), 210–214. https://repo-dosen.ulm.ac.id//handle/123456789/8183

Aspriyanto, D., Nirwana, I., & Budi, H. S. (2018). FGF-2 expression and the amount of fibroblast in the incised wounds of Rattus norvegicus rats induced with Mauli banana (Musa acuminata) stem extract. Dental Journal (Majalah Kedokteran Gigi), 50(3), 121. https://doi.org/10.20473/j.djmkg.v50.i3.p121-126

Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials and Design, 29(7), 1285–1290. https://doi.org/10.1016/j.matdes.2007.09.006

Cevanti, T. A., Soesilo, D., Pangabdian, F., Wijaya, Y. H., Puspita, S., & Hollanda, G. H. (2023). Sitotoksisitas komposit serat selulosa sabut kelapa sebagai kandidat novelty basis pada material kedokteran gigi: studi eksperimental. Padjadjaran Journal of Dental Researchers and Students, 7(2), 198. https://doi.org/10.24198/pjdrs.v7i2.46092

Djustiana, N., Faza, Y., & Hardiyansyah, A. (2021). Uji sitotoksisitas mikrofiber PMMA dan PMMA-Silika wetspinning pada kultur sel primer L-929 sebagai aplikasi penguat jembatan gigi direk. Padjadjaran Journal of Dental Researchers and Students, 164–168. https://doi.org/10.24198/pjdrs.v4i1.36304

Golbidi, F. & Mousavi, T. (2007). Transverse Strength of Repaired Denture Base Material with Wire and Two Auto Polymerized Acrylic Resin. Journal of Dentistry, Tehran University of Medical Sciences, Tehran, Iran, 4(4), 183–187. eISSN: 2676-296X

Freshney, R. I. (2008). Culture of Animals Cells. Manual of Basic Technique and Specialized Applications. Sixth Edition Wiley-Blackwell.

Geurtsen, W. (2002). Biocompatibility of dental casting alloys. Critical Reviews in Oral Biology and Medicine, 13(1), 71–84. https://doi.org/10.1177/154411130201300108

Hadianto, E., Widjijono, & Herliansyah, M. K. (2013). Pengaruh Penambahan Polyethylene Fiber Dan Serat Sisal Terhadap Kekuatan Fleksural Dan Impak Base Plate Komposit Resin Akrilik. Insisiva Dental Journal, 2(2), 57–67. https://doi.org/10.18196/di.v2i2.577

Hassan, M., Asghar, M., Din, S. U., & Zafar, M. S. (2019). Thermoset polymethacrylate-based materials for dental applications. In Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816874-5.00008-6

Ismiyati, T., Siswomihardjo, W., Soesatyo, M. H. N. E., & Rochmadi, R. (2017). Uji Sitoksisitas Campuran Resin Akrilik Dengan Kitosan Sebagai Bahan Gigi Tiruan Anti Jamur. Jurnal Teknosains, 5(2), 97. https://doi.org/10.22146/teknosains.27580

Jang, H. S., & Lee, M. S. (2015). The study of differentiation of oral fibroblast according to the cultivating space. Procedia Engineering, 110, 114–117. https://doi.org/10.1016/j.proeng.2015.07.017

Kamalak, H., Kamalak, A., Taghizadehghalehjoughi, A., Hacımüftüoğlu, A., & Nalcı, K. A. (2018). Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology, 106(4), 377–388. https://doi.org/10.1007/s10266-018-0354-5

Kanie, T., Fujii, K., Arikawa, H., & Inoue, K. (2000). Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dental Materials, 16(2), 150–158. https://doi.org/10.1016/S0109-5641(99)00097-4

Kazak, M., Donmez, N., Bahadori, F., Yenigun, V. B., & Kocyigit, A. (2020). A Preliminary Research Study on the Cytotoxicity of Expired and Non-expired Composite Resins: In Vitro Study. Odovtos - International Journal of Dental Sciences, 22(3), 123–134. https://doi.org/10.15517/IJDS.2020.40455

Kim, J. T., & Netravali, A. N. (2010). Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 41(9), 1245–1252. https://doi.org/10.1016/j.compositesa.2010.05.007

Ku, H., Wang, H., Pattarachaiyakoop, N., dan Trada, M. (2011). A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites, Composites: Part B 42. 856-73. https://doi.org/10.1016/j.compositesb.2011.01.010

Kunarto, & Ernawan, A. (2018). Serat Pelepah Pisang Dan Eceng Gondok Sebagai Penguat Komposit Dengan Variasi Arah Serat Terhadap Uji Tarik Dan Bending. Jurnal Teknik Mesin Universitas Bandar Lampung, 5(2), 1–4. ISSN: 2087-3832

Kurniawati, Y., Adi, S., Achadiyani, A., Suwarsa, O., Erlangga, D., & Putri, T. (2015). Kultur Primer Fibroblas: Penelitian Pendahuluan. Majalah Kedokteran Andalas, 38(1), 33. https://doi.org/10.22338/mka.v38.i1.p33-40.2015

Meiyanto, E., Melannisa, R., & Da’i, M. (2006). PGV-1 menurunkan ekspresi faktor angiogenesis (VEGF dan COX-2) pada sel T47D terinduksi estrogen. Majalah Farmasi Indonesia, 17(1), 1–6. ISSN: 0126-1037

Promdontree, P., Kheolamai, P., Ounkaew, A., Narain, R., & Ummartyotin, S. (2023). Characterization of Cellulose Fiber Derived from Hemp and Polyvinyl Alcohol-Based Composite Hydrogel as a. Polymers, 15(4098), 1–16. https://doi.org/10.3390/polym15204098

Rose, E. C., Bumann, J., Jonas, I. E., & Kappert, H. F. (2000). Contribution to the Biological Assessment of Orthodontic Acrylic MaterialsMeasurement of their Residual Monomer Output and Cytotoxicity. Journal of Orofacial Orthopedics / Fortschritte Der Kieferorthopädie, 61(4), 246–257. https://doi.org/10.1007/s000560050010

Schmalz, G. (1998). The biocompatibility of non‐amalgam dental filling materials. European Journal of Oral Sciences. 4, 696–706. doi: 10.1046/j.0909-8836.1998.eos10602ii05.x. PMID: 9584903.

Supraptiningsih, S. (2012). Pengaruh serbuk serat batang pisang sebagai filler terhadap sifat mekanis dari komposit PVC– CaCO3. Majalah Kulit, Karet, Dan Plastik, 28(2), 79. https://doi.org/10.20543/mkkp.v28i2.108

Widiyantoro, A., Linda, R., & Kurniasih, E. P. (2021). Karakteristik Serat Pelepah Pisang dari Berbagai Spesies dengan Variasi Perendaman. 211–214. https://doi.org/10.26418/pipt.2021.47

Xu, J., Li, Y., Yu, T., & Cong, L. (2013). Reinforcement of denture base resin with short vegetable fiber. Dental materials: official publication of the Academy of Dental Materials, 29(12), 1273–1279. https://doi.org/10.1016/j.dental.2013.09.013

Yuliati, A. (2005). Viabilitas sel fibroblas BHK-21 pada permukaan resin akrilik rapid heat cured (Viability of fibroblast BHK-21 cells to the surface of rapid heat cured acrylic resins). Dental Journal (Majalah Kedokteran Gigi), 38(2), 68. https://doi.org/10.20473/j.djmkg.v38.i2.p68-72



DOI: https://doi.org/10.22146/teknosains.90278

Article Metrics

Abstract views : 326 | views : 289

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Endang Prawesthi et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing