Optimization of chitinase production from bacillus cereus smg 1.1 using response surface methodology

https://doi.org/10.22146/teknosains.72606

Adnan Widodo(1), Indun Dewi Puspita(2*), Ustadi Ustadi(3)

(1) Faculty of Agriculture, Universitas Gadjah Mada
(2) Faculty of Agriculture, Universitas Gadjah Mada
(3) Faculty of Agriculture, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Shrimp shell waste are potential to be processed further into value-added products, such as N-acetylglucosamine (GlcNAc). In the production of GlcNAc, biological approach is preferred and environmentally friendly to chemical treatment. Chitinase is an enzyme that plays a vital role in bioprocessing of shrimp shell waste into GlcNAc. Previously, Bacillus cereus SMG 1.1 was isolated from fermented shrimp paste (terasi) and showed the ability to produce chitinase. This study was designed to determine the optimum medium for the production of chitinase from B. cereus SMG 1.1 through the Response Surface Method (RSM) using a factorial design with 15 treatments. The optimization of the media was carried out by determining the factors that influence the production of chitinase through the Plackett-Burman design followed by optimization of the concentration of the media through the Box-Behnken design. The test was designed to assess the effect of the independent variables on chitinase activity. Placket Burman analysis shows that colloidal chitin, fructose, and MgSO4.5H2O were the significant components in the medium affecting the production of chitinase by B. cereus SMG 1.1. Box-Behnken analysis developed a linear model capable of predicting the response. The highest response value was achieved at a concentration of 0.75% fructose, 1.5% colloidal chitin, and 0.075% MgSO4.5H2O resulted in optimum chitinase activity of 0.0016 U/ml.


Keywords


Chitinase; Chitin; Fructose; MgSO4.5H2O; RSM

Full Text:

PDF


References

Akhir, S. ., Abd-Aziz, S., Salleh, M. M., Rahman, R. A., Illias, R. M., & Hassan, M. . (2009). Medium optimisation of chitinase enzyme production from shrimp waste using Bacillus licheniformis TH-1 by response surface methods. Biotechnology, 8, 120–125. https://doi.org/10.3923/biotech.2009.120.125

Aounallah, M. A., Slimene-Debez, I. Ben, Djebali, K., Gharbi, D., Hammami, M., Azaiez, S., Limam, F., & Tabbene, O. (2017). Enhancement of Exochitinase Production by Bacillus licheniformis AT6 Strain and Improvement of N-Acetylglucosamine Production. Applied Biochemistry and Biotechnology, 181(2), 650–666. https://doi.org/10.1007/s12010-016-2239-9

Arnold, N. and N.A. Solomon. (1986). Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology. Washington.

Bhattacharya, S., Das, A., Samadder, S., & Rajan, S. S. (2016). Biosynthesis and characterization of a thermostable, alkali-tolerant chitinase from Bacillus pumilus JUBCH08 displaying antagonism against phytopathogenic Fusarium oxysporum. 3 Biotech, 6(1), 1–8. https://doi.org/10.1007/s13205-016-0406-x

Chang, W. T., Chen, C. S., & Wang, S. L. (2003). An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Current Microbiology, 47(2), 102–108. https://doi.org/10.1007/s00284-002-3955-7

Cheba, B. A., & Zaghloul, T. (2017). Effect of Carbon Sources on Bacillus sp . R2 Chitinase Production. Advances in Environmental Biology, 11(3), 75–80.

Dhananjaya, I.G.P.R. (2018). Pengaruh pH, Suhu, dan Jenis Substrat terhadap Aktivitas Kitinase Bacillus cereus SMG 1.1. Skripsi. Program S1 Fakultas Pertanian Universitas Gadjah Mada. Yogyakarta.

Dukariya, G., & Kumar, A. (2020). Chitinase Production from Locally Isolated Bacillus cereus GS02 from Chitinous Waste Enriched Soil. Journal of Advances in Biology & Biotechnology, April, 39–48. https://doi.org/10.9734/jabb/2020/v23i130137

Ghanem, K. ., Al-Garni, S. ., & Al-Makishah, N. . (2010). Statistical optimization of cultural conditions for chitinase production from fish scales waste by Aspergillus terreus. African Journal of Biotechnology, 9(32), 5135–5146. https://doi.org/10.5897/AJB09.1937

Ghorbel-Bellaaj, O., Manni, L., Jellouli, K., Hmidet, N., & Nasri, M. (2012). Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase. Annals of Microbiology, 62(3), 1255–1268. https://doi.org/10.1007/s13213-011-0371-x

Gohel, V., Chaudhary, T., Vyas, P., & Chhatpar, H. S. (2006). Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa. Biochemical Engineering Journal, 28(1), 50–56. https://doi.org/10.1016/j.bej.2005.09.002

Gurav, R., Tang, J., & Jadhav, J. (2017). Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. International Biodeterioration and Biodegradation, 125, 228–234. https://doi.org/10.1016/j.ibiod.2017.09.015

Han, Y., Li, Z., Miao, X., & Zhang, F. (2008). Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochemistry, 43(10), 1088–1093. https://doi.org/10.1016/j.procbio.2008.05.014

Hsu, S. C., & Lockwood, J. L. (1975). Powdered Chitin Agar as a Selective Medium for Enumeration of Actinomycetes in Water and Soil. Applied Microbiology, 29(3), 422–426. https://doi.org/10.1128/am.29.3.422-426.1975

Kumar, A., Gupta, N. K., Angural, S., & Rana, M. (2017). Process optimization of extracellular chitinase production from Bacillus sp. isolate from fish waste dumping site. European Journal of Pharmaceutical and Medical Research, 4(9), 474–480.

Liang, T. W., Chen, Y. Y., Pan, P. S., & Wang, S. L. (2014). Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules, 63, 8–14. https://doi.org/10.1016/j.ijbiomac.2013.10.027

Lien, T. S., Yu, S. T., Wu, S. T., & Too, J. R. (2007). Induction and purification of a thermophilic chitinase produced by Aeromonas sp. DYU-Too7 using glucosamine. Biotechnology and Bioprocess Engineering, 12(6), 610–617. https://doi.org/10.1007/BF02931076

Mabuchi, N., Hashizume, I., & Araki, Y. (2000). Characterization of chitinases excreted by Bacillus cereus CH. Canadian Journal of Microbiology, 46(4), 370–375. https://doi.org/10.1139/w99-148

Montgomery, D. C. (2013). Design and Analysis of Experiments Eighth Edition. Arizona State University. In Copyright (Vol. 2009, Issue 2005).

Park, P. K., Cho, D. H., Kim, E. Y., & Chu, K. H. (2005). Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World Journal of Microbiology and Biotechnology, 21(4), 429–434. https://doi.org/10.1007/s11274-004-1891-3

Patil, R. S., Ghormade, V., & Deshpande, M. V. (2000). Chitinolytic enzymes: An exploration. Enzyme and Microbial Technology, 26(7), 473–483. https://doi.org/10.1016/S0141-0229(00)00134-4

Pramana, B. (2014). Isolasi dan Karakterisasi Bakteri Kitinolitik dari Terasi Udang. Skripsi. Program S1 Fakultas Pertanian Universitas Gadjah Mada. Yogyakarta.

Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. The Journal of Biological Chemistry, 217(2), 959–966. https://doi.org/10.1016/s0021-9258(18)65959-9

Rishad, K. S., Rebello, S., Nathan, V. K., Shabanamol, S., & Jisha, M. S. (2016). Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatalysis and Agricultural Biotechnology, 5, 143–149. https://doi.org/10.1016/j.bcab.2016.01.009

Saima, Kuddus, M., Roohi, & Ahmad, I. Z. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11(1), 39–46. https://doi.org/10.1016/j.jgeb.2013.03.001

Schroeder, J. W., Yeesin, P., Simmons, L. A., & Wang, J. D. (2018). Sources of spontaneous mutagenesis in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 53(1), 29–48. https://doi.org/10.1080/10409238.2017.1394262

Sharmistha, C., Sourav, B., & Arijit, D. (2012). Optimization of process parameters for chitinase production by a marine isolate of Serratia marcescens. International Journal of Pharmacy and Biological Science, 2(2), 8–20.

Shivalee, A., Lingappa, K., & Mahesh, D. (2018). Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation by Streptomyces pratensis strain KLSL55. Journal of Genetic Engineering and Biotechnology, 16, 421–426. https://doi.org/10.1016/j.jgeb.2017.12.006

Siboro, R. A. (2017). Produksi, purifikasi parsial dan aktivitas kitinase dari Bacillus cereus SMG 1.1. Skripsi. Program S1 Fakultas Pertanian Universitas Gadjah Mada. Yogyakarta.

Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2). https://doi.org/10.1007/s13205-016-0485-8

Tasharrofi, N., Adrangi, S., Fazeli, M., Rastegar, H., Khoshayand, M. R., & Faramarzi, M. A. (2011). Optimization of chitinase production by Bacillus pumilus using Plackett-Burman design and response surface methodology. Iranian Journal of Pharmaceutical Research, 10(4), 759–768. https://doi.org/10.22037/ijpr.2011.1053

Titgemeyer, F., & Brückner, R. (2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 209(2), 141–148. https://doi.org/10.1111/j.1574-6968.2002.tb11123.x

Uria, A. R., Chasanah, E., Fawzya, Y. N., & Processing, F. P. (2005). Optimization of Bacillus sp. K29-14 chitinase production using marine crustacean waste. Journal of Coastal Development, 8(2), 155–162.

Wang, S. L., Hsiao, W. J., & Chang, W. T. (2002). Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry, 50(8), 2249–2255. https://doi.org/10.1021/jf011076x

Wang, S. L., Liu, C. P., & Liang, T. W. (2012). Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 90(3), 1305–1313. https://doi.org/10.1016/j.carbpol.2012.06.077

Wassenaar, T. M., & Zimmermann, K. (2020). How industrial bacterial cultures can be kept stable over time. Letters in Applied Microbiology, 71(3), 220–228. https://doi.org/10.1111/lam.13309

Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174. https://doi.org/10.3390/md13031133



DOI: https://doi.org/10.22146/teknosains.72606

Article Metrics

Abstract views : 912 | views : 429

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Adnan Widodo et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2019 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing