Kekuatan kompresi semen alpha tricalcium phosphate dengan komposisi larutan sodium yang berbeda

https://doi.org/10.22146/mkgk.80838

Ruslin Ruslin(1), Sri Larnani(2), Priztika Widya Nursalim(3), Mayu Winnie Rachmawati(4), Anne Handrini Dewi(5*)

(1) Departemen Biomedika Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(2) Departemen Biomedika Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(3) Pendidikan Dokter Gigi, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(4) Departemen Biomedika Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(5) Departemen Biomedika Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Calcium phosphate cement (CPC) merupakan campuran dari cairan dan serbuk yang mengandung calcium phosphate. Kelebihan CPC dibandingkan dengan bone graft lain adalah dapat menyesuaikan defek tulang, mengeras pada in vivo, dan biokompatibel. Kekurangan dari CPC adalah kekuatan mekanik yang rendah. Reaksi setting dan mengerasnya CPC dikarenakan adanya ikatan antar kristal apatite yang berpresipitasi. Cairan yang mengandung ion fosfat biasanya digunakan sebagai campuran untuk mempercepat reaksi setting. Tujuan dari penelitian ini adalah untuk mengetahui perbedaan kekuatan kompresi semen alpha tricalcium phosphate (α-TCP) dengan penggunaan larutan disodium hydrogen phosphate (Na2HPO4) dan sodium dihydrogen phosphate (NaH2PO4). Sebanyak 12 sampel semen α-TCP dibuat dengan ukuran diameter 3 mm dan tinggi 6 mm. Sampel penelitian dibagi menjadi 2 kelompok perlakuan, kelompok pertama campuran serbuk dan larutan Na2HPO4 dan kelompok kedua campuran serbuk α-TCP dan larutan NaH2PO4. Sampel kemudian direndam dalam larutan saline selama 24 jam pada suhu 37 °C. Setelah perendaman selesai, sampel diuji dengan menggunakan universal testing machine (UTM). Data yang diperoleh dimasukkan ke dalam rumus untuk mengetahui kekuatan kompresinya. Data kemudian dianalisis dengan menggunakan independent sample t-test dengan tingkat signifikansi 95%. Rerata kekuatan kompresi semen α-TCP dengan penggunaan larutan Na2HPO4 dan NaH2PO4 adalah 44,51 ± 4,22 MPa dan 21,52 ± 1,85 MPa. Hasil analisis statistik menunjukkan adanya perbedaan yang signifikan pada penggunaan kedua larutan (p < 0,05). Kesimpulan penelitian ini adalah terdapat perbedaan kekuatan kompresi yang signifikaan antara semen α- TCP dengan penggunaan larutan Na2HPO4 NaH2PO44. Kekuatan kompresi semen α-TCP dengan penggunaan larutan Na2HPO4 lebih tinggi daripada semen α-TCP dengan penggunaan larutan NaH2PO4.

 


Keywords


kekuatan kompresi; Na2HPO4; NaH2PO4; semen α-TCP

Full Text:

PDF


References

1. Sfeir C, Ho L, Doll BA, Azari K, Helms JA. Fracture Repair in Lieberman JR, Friedlaender
G.E. (eds.). Bone Regeneration and Repair. New Jersey: Humana Press; 2005. 21.

2. Joneschild E, Urbaniak JR. Biology of the Vascularized Fibular Graft in Lieberman J.R.,
Friedlaender G.E. (eds.): Bone Regeneration and Repair. New Jersey: Humana Press;
2005. 96.

3. Ludwig SC, Kowalski JM, Boden SD. Osteoinductive Bone Graft Subtitutes. Eur
Spine J. 2000; 9(1): S119-S125. doi: 10.1007/pl00008317.

4. Younger EM, Chapman MW. Morbidity at Bone Graft Donor Sites. J Orthop Trauma. 1989; 3(3): 192-195. doi: 10.1097/00005131-198909000-00002.

5. Lewandrowski K, Bondre SP, Trantolo DJ, Wise DL. Biodegradable Scaffold as Bone
Graft Extender in Lewandrowski K, Wise DL, Trantolo DJ, Gresser JD, Yaszemski
MJ, Altobelli DE. Tissue Engineering and Biodegradable Equivalents: Scientific and
Clinical Applications. New York: Marcel Dekker Inc; 2002. 341.

6. Wu W, Chen X, Mao T, Chen F, Feng X. Bone marrow-derived osteoblast seeded into
porous beta-tricalcium phosphate to repair segmental defect in canine’s mandibula. Ulus
Travma Derg. 2006; 12(4): 268-276.

7. Brinker MR, O’Connor DP. Basic Sciences in Miller, D.M. (ed.): Review of Orthopaedics,
5thed. Philadelphia: Elsevier saunders; 2008. 3-4, 16.

8. McKay B, Peckham S, Scifert J. Biologics to Promote Spinal Fusion in Kurtz, S.M., Edidin,
A. (eds.): Spine Technology Handbook. London: Elsevier Inc; 2006. 262.

9. Carrodeguas RG, De Aza S. α-Tricalcium phosphate: Synthesis, properties and
biomedical applications. Acta Biomater. 2011; 7: 3536-3546. doi: 10.1016/j.actbio.2011.06.019

10. Munting E, Mirtchi AA, Lemaitre J. Bone repair of defects filled with a phosphocalcic
hydraulic cement: an in vivo study. J Mater Sci: Mater Med. 1993; 4: 337-344.
doi: 10.1007/BF00122290.

11. Bohner M, Baroud G. New Directions in Bone Materialsin Mauro, M.A., Murphy, Thomson,
Venbrux, Zollikofer (eds.): Image-Guided Intervention. Philadelphia: Elsevier Saunders;
2008. 1072.

12. Santos LA, Carrodeguas RG, Boschi AO, Arruda ACF. Dual-Setting Calcium
Phosphate Cement Modified with Ammonium Polyacrylate. Artif Organs. 2003; 27(5): 412-
418. doi: 10.1046/J.1525-1594.2003.07248.X

13. Ambard AJ, Mueninghoff LM. Calcium Phosphate Cement: Review of Mechanical
and Biological Properties. J Prosthodont. 2006; 15: 321-328.
doi: 10.1111/j.1532-849X.2006.00129.x

14. Espanol M, Perez RA, Montufar EB, Marichal C, Sacco A, Ginebra MP. Intrinsic porosity
of calcium phosphate cements and its significance for drug delivery and tissue
engineering applications. Acta Biomater. 2009; 5: 2752-2762.
doi: 10.1016/j.actbio.2009.03.011

15. Oda M, Takeuchi A, Lin X, Matsuya S, Ishikawa K. Effects of liquid phase on basic
properties of α-tricalcium phosphate-based apatite cement. Dent Mater J. 2008; 27(5):
672-677. doi:10.4012/dmj.27.672

16. Ginebra MP, Fernandez E, De Maeyer EAP, Verbeeck RMH, Boltong MG, Ginebra J, Driessens FCM. Setting reaction and hardening of an apatitic calcium phosphate cement. J Dent Res. 1997; 76(4): 905-912. doi: 10.1177/00220345970760041201

17. Kien PT, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Effect of phosphate solution on
setting reaction of α-TCP spheres. J Aust Ceram Soc. 2010; 46(2): 63-67.

18. Alcamo IE, Krumhard B. Anatomy and Physiology the Easy Way. New York: Barron’s
Educational Series Inc; 2004. 462.

19. Kwon S, Jun Y, Hong S, Kim H. Synthesis and dissolution behaviour of β-TCP and HA/β-
TCP composite powders. J Eur Ceram Soc. 2003; 23: 1039-1045s. doi: 10.1016/S0955-2219(02)00263-7

20. Ginebra MP. Calcium Phosphate Bone Cements in Deb, S. (ed.): Orthopaedic Bone
Cements. Woodhead Publishing Limited. Cambridge; 2008. 208-219.

21. Irbe Z. Influence of composition of α-tricalcium phosphate based bone cements on their
structure and properties. Riga Technical University: Disertasi; 2012.

22. Park JK. Principles and Applications of Lithium Secondary Batteries. New Jersey:
Wiley; 2012. 263.

23. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of Setting Liquid Composition and Liquid-to-Powder Ratio on Properties of a Mg-Subtituted Calcium Phosphate Cement. Acta Biomater. 2009;5(4): 1233-1240.

24. Driessens FCM, Boltong MG, Bermudez O, Planell JA, Ginebra MP, Fernandez
E. Effective Formulation for the Preparation of Calcium Phosphate Bone Cements. J
Mater Sci: Mater Med. 1994; 5: 164-170. doi:10.1007/BF00053338

25. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate
cements. Int. J. Care Injured. 2000; 31: 37-47. doi: 10.1016/s0020-1383(00)80022-4



DOI: https://doi.org/10.22146/mkgk.80838

Article Metrics

Abstract views : 1469 | views : 1785

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 MKGK (Majalah Kedokteran Gigi Klinik) (Clinical Dental Journal) UGM

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View my stats

site
stats