Pemanfaatan komponen biologi aktif tanaman sirih hijau (Piper betle L.) sebagai antibakteri dalam pencegahan karies gigi

https://doi.org/10.22146/mkgk.77192

Jeffrey Jeffrey(1*), Vinna Kurniawati Sugiaman(2)

(1) Departemen Ilmu Kedokteran Gigi Anak, Universitas Jenderal Achmad Yani, Cimahi, Jawa Barat
(2) Departemen Oral Biologi, Universitas Kristen Maranatha, Bandung, Jawa Barat
(*) Corresponding Author

Abstract


Karies gigi merupakan penyakit jaringan keras yang paling sering terjadi di rongga mulut dan menjadi masalah kesehatan, terutama pada anak-anak berumur antara 5-12 tahun, baik di negara maju maupun negara berkembang. Proses pembentukan karies gigi disebabkan oleh Streptococcus mutans yang berkoloni membentuk biofilm pada permukaan gigi dan melakukan metabolisme sukrosa. Hal ini dapat menurunkan pH di rongga mulut karena bersifat asam sehingga menyebabkan terjadinya demineralisasi pada permukaan email gigi dan selanjutnya membentuk kavitas. Pengendalian biofilm umumnya menggunakan bahan dasar Chlorhexidine gluconate namun sayangnya memiliki berbagai efek samping maka perlu dikembangkan suatu upaya pencegahan sehingga mendapat alternatif bahan alami potensial dalam jangka panjang, ideal, dan aman dengan efek samping yang minimal serta dapat menggantikan bahan kimia. Tujuan naratif review ini adalah memaparkan sirih hijau sebagai salah satu bahan alam pengganti bahan kimia pengendali biofilm. Komponen biologi aktif daun sirih hijau seperti minyak atsiri golongan fenol, flavonoid, dan tanin memiliki sifat antibakteri yang bermanfaat untuk mencegah bau mulut, memelihara kesehatan gigi, memperkuat gusi, dan memperbaiki sistem pencernaan. Daun sirih hijau (Piper betle L.) dapat bermanfaat sebagai agen pencegahan karies karena kemampuannya dalam menghambat pembentukan biofilm pada permukaan gigi. Kesimpulan: daun sirih hijau aman dengan efek samping minimal sehingga dapat digunakan sebagai alternatif antibakteri dalam pencegahan pembentukan biofilm dan karies gigi.

Keywords


antibakteri; biofilm; karies; sirih hijau (Piper betle L.); Streptococcus mutans

Full Text:

PDF


References

1. Mansur EKM. Primary prevention of dental caries: an overview. Int J Clin Prev Dent 2020;
16(4): 143-148. doi: 10.15236/ijcpd.2020.16.4.143

2. Pusat Data dan Informasi Kementerian Kesehatan RI. Situasi Kesehatan Gigi dan
Mulut. Laporan Hasil Riset Kesehatan Dasar; 2018. 1

3. WHO. The World Oral Health Report. http://www.who.int/oralhealth/media/en/orhreport03-
en.pdf; 2003.

4. Listrianah. Indek karies gigi ditinjau dari penyakit umum dan sekresi saliva pada anak
di Sekolah Dasar Negeri 30 Palembang. Jurnal Kesehatan Palembang 2017; 2(12).

5. Rosdiana N, Nasution AI. Gambaran daya hambat minyak kelapa murni dan minyak
kayu putih dalam menghambat pertumbuhan streptococus mutans. Syiah Kuala Dental Soc
Jurnal. 2016; 1(1):43-50.

6. Chang YC, Huang FM, Tai KW, Chou MY. The effect of sodium hypochlorite and
chlorhexidine on cultured human periodontal ligament cells. Oral Surg Oral Med Oral Pathol
Oral RadiolEndod. 2001; 92(4): 446–50. doi: 10.1067/moe.2001.116812 9.

7. Zanatta FB, Antoniazzi RP, Rösing CK. Staining and calculus formation after 0.12%
chlorhexidine rinses in plaque-free and plaque covered surfaces: a randomized trial. J Appl
Oral Sci. 2010; 18(5): 515–521.

8. Mangesa R, Aloatuan F. Efektifitas dan kandungan fraksi aktif metanol daun sirih
hijau (Piper Betle L) sebagai antibakteri salmonellatyphi. Biosf Jurnal Tadris Biol.
2019; 10(1): 57-65.

9. Sundari D. Uji Aktivitas antiseptik ekstrak etanol daun sirih (Piper betle Linn.) dalam
obat kumur terhadap staphylococcus aureus secara in vitro. Jurnal Kefarmasian Indonesia.
2019; 1(5): 10-18.

10. Laila VR. Perbandingan total rendemen dan skrining antibakteri ekstrak etanol daun sirih
Hijau (Piper Betle L.) secara Mikrodilusi. Jurnal Sci Appl Technology. 2017; 2(1): 87-93.

11. Fatmawati DWA. Hubungan biofilm streptococcus mutans terhadap resiko
terjadinya karies gigi. Stomatognatic. 2011; 8(3): 127-130.

12. Ullah R, Zafar MS. Oral and dental delivery of fluoride: a review. Res Rev Fluoride. 2015;
48(3): 195-204.

13. Slobodníková L, Fialová S, Rendeková K, Kováč J, Mučaji P. Antibiofilm activity of plant
polyphenols. Molecules. 2016; 21(12): 1717. doi: 10.3390/molecules21121717

14. Kaidonis J, Townsend G. The ‘sialo – microbial – dental complex’ in oral health and disease.
Annals of Anatomy – Anatomischer Anzeiger. 2016; 203: 85-89.
doi: 10.1016/j.aanat.2015.02.002

15. Rosier BT, Jager MDe, Zaura E, Bastiaan P, Tribble GD. Historical and contemporary
hypotheses on the development of oral diseases : are we there yet?. Front Cell Infect
Microbiol. 2014; 4: 92. doi: 10.3389/fcimb.2014.00092

16. Ozdemir D. Dental caries and preventive strategies. J Educ Instr Stud. 2014; 4(4): 20-24.

17. Mahmood S, Mahmood Z. Bacterial Biofilms: medical impact, development, control and
threats. Biology, Medicines. 2015: 395-404.

18. David J, Bradshaw R. Diet and the microbial aetiology of dental caries: new paradigms. Int
Dent J. 2013; 63(s2): 64-72.

19. Ito T, Ichinosawa T, Shimizu T. Streptococcal adhesin sspa/b analogue peptide inhibits
adherence and impacts biofilm formation of Streptococcus mutans. PloS ONE. 2017;
12(4): 1-15. doi: 10.1371/journal.pone.0175483

20. Abachi S, Lee S, Rupasinghe HPV. Molecular mechanisms of inhibition of streptococcus
species by phytochemicals. Molecules. 2016; 21(2): 215. doi: 10.3390/molecules21020215

21. Duzgunes N. Medical microbiology and immunology for dentistry. Quintessence
Publishing Co Inc; 2016; 21(2): 215. doi: 10.3390/molecules21020215

22. Arévalo-Ruano ML, Y.Canacuán-Melo F, Echeverry-Chica J, Salazar-González CL,
Martínez-Delgado CM, Martínez-Pabón MC, Correa MM, Cienfuegos-Gallet AV. Molecular
identification and genotyping of streptococcus mutans from saliva samples of children in
medellin, Colombia. Rev CES Odontol. 2014; 27(2): 47-60.

23. Krzyściak W Kościelniak D, Bystrowska B, Skalniak A. The virulence of streptococcus
mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014; 33(4): 499-
515. doi: 10.1007/s10096-013-1993-7

24. Castro RJ, Herrera R, Giacaman RA. Salivary protein characteristics from saliva of carious
lesion-free. Acta Odontol Latinoam. 2016; 29(2): 178-185.

25. Subramenium GA, Vijayakumar K, Pandian SK. Limonene inhibits streptococcal biofilm
formation by targeting surface-associated virulence factors. J Med Microbiol. 2015;
64(8): 879-890. doi: 10.1099/jmm.0.000105

26. Marsh PD. Marsh and Martin’s Oral Microbiology. 6th ed. Elsevier; 2016.

27. Castro RJ, Herrera R, Giacaman RA. Salivary protein characteristics from saliva of carious
lesion-free. Acta Odontol Latinoam. 2016; 29(2): 178-185.

28. Anitha L. A Review on antimicrobial activity of vegetables, herbs and spices against
cariogenic bacteria department of health sciences. Clinical Nutrition. 2016; 4(4): 12-20.

29. Nayaka MW, Sasadara MM, Sanjaya DA, Yuda SK, Dewi AA, Cahyaningsih E, Hartati
R. Piper betle (L): recent review of antibacterial and antifungal properties, safety profiles, and
commercial applications. Molecules. 2021; 26(8): 2321. doi: 10.3390/molecules26082321.

30. Ratna BR, Kasaudhan R. A Review on Tambula (Piper Betel Linn.) from ayur-vedic
and modern perspective. World J Pharm Res. 2021; 10(5): 1652–1663.

31. Yee SL, Myo TT. Study on preliminary phyto-chemical screening, antibacterial and
antioxidant activities of Piper betle L. (Betel vine). J Myanmar Acad Arts Sci. 2020;
XVIII(1B).

32. Othman AB, Saad MZ, Haiha N, Yusof N, Abdullah SZ. In vitro antimicrobial activity of
betel, Piper betle leaf extract against Vibrio alginolyticus isolated from Asian sea bass,
Lates calcarifer. J Appl Biol Biotechnol. 2018; 6(04): 46–48.

33. Umar RA, Sanusi NA, Zahary NM, Rohin MAK, Ismail S. Chemical composition and the
potential biological activities of Piper Betel. Malaysian Journal of Applied Sciences.
2018; 3(1): 1-8.

34. Islam MA, Ryu KY, Khan N, Song OY, Jeong JY, Son JH, Jamila N, Kim KS. Determination
of the volatile compounds in five varieties of Piper betle L. from Bangladesh using simultaneous distillation extraction and gas chromatography/mass spectrometry (SDEGC/
MS). Anal Lett. 2020; 53(15): 2413–2430. doi: 10.1080/00032719.2020.1744160

35. Nguyen LTT, Nguyen TT, Nguyen HN, Bui QTP. Simultaneous determination of active
compounds in Piper betle Linn. leaf extract and effect of extracting sol-vents on bioactivity.
Eng Reports. 2020; 2(10): 2–9.



DOI: https://doi.org/10.22146/mkgk.77192

Article Metrics

Abstract views : 2829 | views : 2037

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 MKGK (Majalah Kedokteran Gigi Klinik) (Clinical Dental Journal) UGM

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View my stats

site
stats