Molecular docking of noni fruit extract (M. citrifolia L.) active compound as a radiation protection agent: a bioinformatic approach

https://doi.org/10.22146/majkedgiind.97890

Deny Saputra(1*), Sri Wigati Mardi Mulyani(2), Nastiti Faradilla Ramadhani(3), Jane Evelyn Margareth(4), Regita Maharani Kharisma Putri(5), Farah Tariza Harlens(6), Alexander Patera Nugraha(7)

(1) Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(2) Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(3) Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(4) Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(5) Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(6) Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(7) Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
(*) Corresponding Author

Abstract


Noni fruit (M. citrifolia L.) is a medicinal plant known for its antioxidant bioactive compounds, which have potential use as radiation protection agents. Despite their traditional use, the specific bioactive compounds and their efficacy as radiation protectants have not been thoroughly investigated. This study aims to address this research gap by evaluating the potential of noni fruit extract as a candidate for radiation protection using in-silico methods. Databases consulted include PubChem, PASS Online, and ProTox-II. The results identified nine bioactive compounds in noni fruit extract: quercetin, kaempferol, morindin, morindone, alizarin, nicotinamide, beta-sitosterol, squalene, and n-hexadecanoic acid. Among these, kaempferol, squalene, and n-hexadecanoic acid were found to be the most potent antioxidants. Kaempferol exhibited a low toxicity level (grade 5) with significant activity as an antioxidant (Pa ≥ 0.7), free radical scavenger (Pa ≥ 0.7), and radioprotector (Pa 0.3 – 0.7). Squalene, a triterpene with low toxicity (class 5), showed antioxidant activity (Pa 0.3 – 0.7), free radical scavenger activity (Pa 0.3 – 0.7), and radioprotection (Pa 0.3 – 0.7). n-Hexadecanoic acid, a metabolite with moderate toxicity (class 4), demonstrated lower antioxidant activity (Pa ≤ 0.3), while morindin exhibited free radical scavenging and radioprotective properties. The findings suggest that kaempferol, squalene, and n-hexadecanoic acid in noni fruit extract hold promise as candidates for radiation protection, as evidenced by in-silico analysis.


Keywords


bioactive compounds; in silico; medicine; Morinda citrifolia; radiation protection

Full Text:

Deny Saputra


References

1. Raidha F, Epsilawati L, Wardani R. Pengetahuan radiografi di bidang kedokteran gigi pada siswa Sekolah Menengah Atas. Padjadjaran Journal of Dental Researchers and Students. 2018;
2(2): 150-154. doi: 10.24198/pjdrs.v3i1.21449

2. Barrett C, Hellickson I, Ben-Avi L, Lamb D, Krahenbuhl M, Cerveny KL. Impact of low-level
ionizing radiation on cell death during zebrafish embryonic development. Health Phys. 2018;
114(4): 421-428. doi: 10.1097/HP.0000000000000788

3. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol
Mutagen. 2017; 58(5): 235-263. doi: 10.1002/em.22087

4. Rahman FUA, Nurrachman AS, Astuti ER, Epsilawati L. Paradigma baru konsep proteksi radiasi di bidang radiologi kedokteran gigi: ALARA menjadi ALADAIP. Journal of Dentomaxillofacial Radiology Indonesia. 2020; 4(2): 27-34. doi: 10.32793/jrdi.v4i2.555

5. Huang H, Huang G. Extraction, separation, modification, structural characterization, and
antioxidant activity of plant polysaccharides. Chem Biol Drug Des. 2020; 96(5): 1209-1222.
doi: 10.1111/cbdd.13794

6. Nugraha AP, Triwardhani A, Sitalaksmi RM, Ramadhani NF, Luthfi M, Ulfa NM, et al. Phytochemical, antioxidant, and antibacterial activity of Moringa oleifera nanosuspension against peri-implantitis bacteria: An in vitro study. J Oral Biol Craniofac Res. 2023; 13(6): 720-726. doi: 10.1016/j.jobcr.2023.09.004

7. Kumar HC, Lim XY, Mohkiar FH, Suhaimi SN, Shafie NM, Tan TYC. Efficacy and Safety of Morinda citrifolia L. (Noni) as a potential anticancer agent. Integr Cancer Ther. 2022; 21: 15347354221132848. doi: 10.1177/15347354221132848

8. Potterat O, Hamburger M. Morinda citrifolia (Noni) fruit-phytochemistry, pharmacology,
safety. Planta Med. 2007; 73(3): 191-199. doi: 10.1055/s-2007-967115

9. Basar S, Uhlenhut K, Högger P, Schöne F, Westendorf J. Analgesic and antiinflammatory
activity of Morinda citrifolia L. (Noni) fruit. Phytother Res. 2010; 24(1): 38-42.
doi: 10.1002/ptr.2863

10. Dona R, Frimayanti N, Ikhtiarudin I, Iskandar B, Maulana F, Silalahi NT. Studi in silico,
sintesis, dan uji sitotoksik senyawa P-Metoksi kalkon terhadap sel kanker payudara MCF-7.
J Sains Farm Klin. 2019; 6(3): 243-249. doi: 10.25077/jsfk.6.3.243-249.2019

11. Hussain SM, Hussain MS, Ahmed A, Arif N. Characterization of isolated bioactive phytoconstituents from Flacourtia indica as potential phytopharmaceuticals-An in silico
perspective. Journal of Pharmacognosy and Phytochemistry. 2016; 5(6): 323-331.

12. Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths,
weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018; 11(1): 5-12.

13. Jana N, Břetislav G, Pavel S, Pavla U. Potential of the flavonoid quercetin to prevent and treat cancer - current status of research. Klin Onkol. 2018; 31(3): 184-190.
doi: 10.14735/amko2018184

14. Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: chemical characteristics and biological activity. Molecules. 2021; 26(17): 5377. doi: 10.3390/molecules26175377

15. Cho SY, Kim HW, Lee MK, Kim HJ, Kim JB, Choe JS, Lee YM, Jang HH. Antioxidant and
anti-inflammatory activities in relation to the flavonoids composition of pepper (Capsicum
annuum L.). Antioxidants (Basel). 2020; 9(10): 986. doi: 10.3390/antiox9100986

16. Hua Z, Zhang W, Han L, Zhang Y, Jiang X, Ding C. Kaempferol exerts antioxidant effects
in age-related diminished ovarian reserve by regulating the HSP90/NRF2 pathway. Chem
Biol Drug Des. 2024; 103(1): e14385. doi: 10.1111/cbdd.14385

17. López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and antimicrobial peptides derived from food proteins. Molecules. 2022; 27(4): 1343.
doi: 10.3390/molecules27041343

18. Pei H, Chen W, Hu W, et al. GANRA-5 protects both cultured cells and mice from various
radiation types by functioning as a free radical scavenger. Free Radic Res. 2014; 48(6): 670-
678. doi: 10.3109/10715762.2014.910657

19. Gęgotek A, Skrzydlewska E. Ascorbic acid as antioxidant. Vitam Horm. 2023; 121: 247-
270. doi: 10.1016/bs.vh.2022.10.008



DOI: https://doi.org/10.22146/majkedgiind.97890

Article Metrics

Abstract views : 1646 | views : 467

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics