Impact of immersion in papaya juice on color and surface roughness of nanohybrid composite resin

https://doi.org/10.22146/majkedgiind.93782

Queenie Renata Constantia(1), Rosalina Tjandrawinata(2*), Tansza Setiana Putri(3)

(1) Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(2) Department of Dental Materials, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(3) Department of Dental Materials, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Nanohybrid composite resin is well-known because of its good aesthetic properties. It has high water sorption, allowing various coloring substances such as papaya juice to penetrate. Papaya juice enzymes may also cause a rougher composite resin surface. This study determined the effect of papaya juice on color and surface roughness of nanohybrid composite resin using laboratory experiment. This study used posttest with control group design containing 27 samples of nanohybrid composite resin (B & E Korea XS-FIL A3.5) with diameter of 10 mm and thickness of 2 mm. The samples were divided into 3 groups: immediate, control, and treatment group. The samples of immediate group were tested directly for color and surface roughness. The treatment group was immersed in papaya juice for 3 hours followed by 21 hours in distilled water, while the control group was immersed in distilled water for 24 hours. All samples were immersed in an incubator at 37 °C for 4 days. Changes in color and surface roughness were tested using a VITA Easyshade V spectrophotometer and a Taylor Hobson surface roughness tester, respectively. ANOVA and post hoc Tukey showed a significant (p < 0.05) change in color (p = 0.003) and surface roughness (p = 0.000); significant (p = 0.033) color change was obtained between the immediate group (E = 6.933) and the treatment group (E = 7.959). In terms of surface roughness, significant (p = 0.000) results were obtained between the treatment group (Ra = 1.974 μm) with the immediate group (Ra = 1.411 μm) and the control group (Ra = 1.404 μm). In conclusion, papaya juice causes changes in color and surface roughness of nanohybrid composite resin.

Keywords


color change; nanohybrid composite resin; papaya juice; surface roughness



References

1. Pinnamaneni R. Nutritional and medicinal value of papaya (Carica papaya Linn.). World
J Pharm Pharm Sci. 2017; 6(8): 2559–2578. doi: 10.20959/wipps20178-9947

2. Honoré MN, Belmonte-Ureña LJ, Navarro-Velasco A, Camacho-Ferre F. The production
and quality of different varieties of papaya grown under greenhouse in short cycle in continental europe. Int J Environ Res Public Health. 2019; 16(10): 1789. doi: 10.3390/ijerph16101789

3. Nasution SP, Siregar RS. Analysis of demand of papaya fruit in Central Market Medan. IOP
Conf Ser: Earth and Environ Sci. 2020; 454(1): 012013. doi: 10.1088/1755-1315/454/1/012013

4. Hariono M, Julianus J, Djunarko I, Hidayat I, Adelya L, Indayani F, et al. The future of carica
papaya leaf extract as an herbal medicine product. Molecules. 2021; 26(22): 6922.
doi: 10.3390/molecules26226922

5. Saliasi I, Llodra JC, Bravo M, Tramini P, Dussart C, Viennot S, et al. Effect of a toothpaste/ mouthwash containing carica papaya leaf extract on interdental gingival bleeding: a randomized controlled trial. Int J Environ Res Public Health. 2018; 15(12): 2660. doi: 10.3390/ijerph15122660

6. Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á,
Kamli MR, Tavano O, et al. Immobilization of papain: A review. Int J Biol Macromol. 2021;
188: 94–113. doi: 10.1016/J.IJBIOMAC.2021.08.016

7. Kusuma Yulianto HD, Rinastiti M, Cune MS, de Haan-Visser W, Atema-Smit J, Busscher
HJ, et al. Biofilm composition and composite degradation during intra-oral wear. Dent
Mater. 2019; 35(5): 740–750. doi: 10.1016/j.dental.2019.02.024

8. Zheng LW, Wang JY, Yu RQ. Biomaterials in dentistry. Encyclopedia of Biomedical
Engineering. 2019; 1–3: 278–88. doi: 10.1016/B978-0-12-801238-3.11033-5

9. Kamadi J, Liliany D. Effect of pineapple juice (ananas comosus) on surface roughness of
preheated and non-preheated nanohybrid composite resins. Journal of Indonesian
Dental Association. 2022; 5(1): 1–5. doi: 10.32793/jida.v5i.757

10. Münchow EA, Hamann HJ, Carvajal MT, Pinal R, Bottino MC. Stain removal effect of novel
papain- and bromelain-containing gels applied to enamel. Clin Oral Investig. 2016; 20(8):
2315–2320. doi: 10.1007/s00784-016-1840-1

11. Ribeiro JS, Barboza A da S, Cuevas-Suárez CE, da Silva AF, Piva E, Lund RG. Novel
in-office peroxide-free tooth-whitening gels: bleaching effectiveness, enamel surface
alterations, and cell viability. Sci Rep. 2020; 10(1): 10016.
doi: 10.1028/s41599-020-66733-z

12. Wulansari S, Cristandy GL, Suwartini T. The effect of red beetroot juice (beta vulgaris,
sp.) on the tooth color. Journal of Indonesian Dental Association. 2019; 1(2): 69.
doi: 10.32793/jida.v2i1.357

13. Sakaguchi RL, Ferracane JL, Powers JM. Craig’s restorative dental materials. Craig’s
Restorative Dental Materials. 2018; 1–340. doi: 10.1016/C2015-0-01767-1

14. Mara da Silva T, Barbosa Dantas DC, Franco TT, Franco LT, Rocha Lima Huhtala MF.
Surface degradation of composite resins under staining and brushing challenges. J Dent Sci.
2019; 14(1): 87–92. doi: 10.1016/J.JDS.2018.11.005

15. Poggio C, Ceci M, Beltrami R, Mirando M, Wassim J, Colombo M. Color stability of esthetic
restorative materials: a spectrophotometric analysis. Acta Biomater Odontol Scand. 2016;
2(1): 95–101. doi: 10.1080/23337932.2016.1217416

16. Shen YH, Yang FY, Lu BG, Zhao WW, Jiang T, Feng L, et al. Exploring the differential
mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC
Genomics. 2019; 20(1): 49. doi: 10.1186/s12864-018-5388-0

17. Aydın N, Topçu F-T, Karaoğlanoğlu S, Oktay E-A, Erdemir U. Effect of finishing and polishing
systems on the surface roughness and color change of composite resins. J Clin Exp Dent.
2021; 13(5): e446–54. doi: 10.4317/jced.58011

18. Berghaus E, Roling X, Warkentin M, Petersen S. Effect of enzymatic degradation and hydrolysis on 3D-printed resin-based composite material for temporary dental crowns and bridges. Current Directions in Biomedical Engineering. 2022; 8(2): 281–284.
doi: 10.1515/cdbme-2022-1072

19. Priyanka, Kumar S, Mishra R, Saxena S. In silico detection tools for begomoviruses
causing leaf curl disease in crops and its management through RNA interference.
In: Geminivirus : Detection, Diagnosis and Management. Elsevier; 2022. 57–75.
doi: 10.1016/B978-0323-90587-9.00008-0

20. Albarran-Martínez L, Rodríguez-Vilchis LE, Contreras-Bulnes R, Moyaho-Bernal M de LA, Teutle-Coyotecatl B. Effect of different industrialized acid beverages on the surface roughness of flowable composite resins: in vitro study. J Clin Pediatr Dent. 2023; 47(5):
152–161. doi: 10.22514/jocpd.2023.065

21. Puspitasari SA, Siswomiharjdo W, Harsini H. Perbandingan kekasaran permukaan resin
komposit nanofiller pada perendaman saliva pH Asam. Jurnal Material Kedokteran Gigi.
2016; 5(2): 15. doi: 10.32739/jmkg.v5i2.248

22. Yadav RD, Raisingani D, Jindal D, Mathur R. A Comparative analysis of different
finishing and polishing devices on nanofilled, microfilled, and hybrid composite: a scanning
electron microscopy and profilometric study. Int J Clin Pediatr Dent. 2016; 9(3): 201–208.
doi: 10.5005/jp-journals-10005-1364



DOI: https://doi.org/10.22146/majkedgiind.93782

Article Metrics

Abstract views : 885 | views : 128

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics