Silkworm cocoon (Bombyx mori) accelerates wound healing in skin excision: a study on macrophage and VEGF

Sudirman Sudirman(1), Cahya Yustisia Hasan(2*), Pingky Krisna Arindra(3)
(1) Oral and Maxillofacial Surgery Specialty Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Departement of Oral and Maxillofacial Surgery, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Departement of Oral and Maxillofacial Surgery, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
SudirmanReferences
1. Dhivya S, Padma VV, Santhini E. Wound dressings - A review. Biomedicine. 2015; 5(4):
22. doi: 10.7603/s40681-015-0022-9
2. Chabra S, Chhabra N, Kaur A, Gupta N. Wound healing concepts in clinical practice of
OMFS. J Maxillofac Oral Surg. 2017; 16(4): 403-423. doi: 10.1007/s12663-016-0880-z
3. Yu R, Jiang X, Wang X, Zhang B. The application of aesthetic surgery technology
based on facial trauma. Indian J Pharm Sci. 2019; 81(4): 144–150.
4. Kopecki Z, Cowin AJ. Fighting chronic wound infection – One model at a time. Wound Pract
Res. 2017; 25(1): 6–13.
5. Kamalathevan P, Ooi PS, Loo YL. Silkbased biomaterials in cutaneous healing: A
systematic review. Adv Skin Wound Care. 2018; 31(12): 565–573.
doi: 10.1097/01.ASW.0000546233.35130.a9
6. Kaewkod T, Kumseewai P, Suriyaprom S, Intachaisri V, Cheepchirasuk N, Tragoolpua Y.
Potential therapeutic agents of Bombyx mori silk cocoon extracts from agricultural product
for inhibition of skin pathogenic bacteria and free radicals. PeerJ. 2024; 12: e17490.
doi: 10.7717/peerj.17490
7. Yu K, Lu F, Li Q, Chen HL, Lu BT, Liu JW, et al. In situ assembly of Ag nanoparticles (AgNPs)
on porous silkworm cocoon-based wound film: Enhanced antimicrobial and wound healing
activity. Sci Rep. 2017; 7(1): 2107–2019. doi: 10.1038/s41598-017-02270-6
8. Khalaf AA, Hassanen EI, Zaki AR, Tohamy AF, Ibrahim MA. Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in
rats. Int Wound J. 2019; 16(6): 1416-1425. doi: 10.1111/iwj.13206
9. Oliveira Barud HG, Barud HS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos
DM, et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015; 128: 41–51. doi: 10.1016/j.carbpol.2015.04.007
10. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016; 73(20): 3861-3885. doi: 10.1007/s00018-016-2268-0
11. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade
MAC. Experimental models and methods for cutaneous wound healing assessment. Int J
Exp Pathol. 2020; 101(1-2): 21-37. doi: 10.1111/iep.12346
12. Choudhary V, Choudhary M, Bollag WB. Exploring skin wound healing models and the
impact of natural lipids on the healing process. Int J Mol Sci. 2024; 25(7): 3790.
doi: 10.3390/ijms25073790
13. Férnandez-Guarino M, Naharro-Rodriguez J, Bacci S. Disturbances in the skin homeostasis:
Wound healing, an undefined process. Cosmetics. 2024; 11(3): 90.
doi: 10.3390/cosmetics11030090
14. Chhabra S, Chhabra N, Kaur A, Gupta N. Wound Healing Concepts in Clinical Practice
of OMFS. J Maxillofac Oral Surg. 2017; 16(4): 403-423.
15. Grada A, Mervis J, Falanga V. Research techniques made simple: animal models of wound healing. J Invest Dermatol. 2018; 138(10): 2095-2105.e1. doi: 10.1016/j.jid.2018.08.005
16. Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model:
Contraction revisited. Wound Repair Regen. 2015; 23(6): 874–877. doi: 10.1111/wrr.12338
17. Subiantoro A, Utariani A, Susilo I. Expression of vascular endothelial growth factor (VEGF)
and new blood vessels formation on wound incision post ropivacaine administration in animal model. International Journal of Innovative Science and Research Technology. 2020; 5(7): 829-836. doi: 10.38124/IJISRT20JUL550
18. Gao X, Lu C, Miao Y, Ren J, Cai X. Role of macrophage polarisation in skin wound
healing. Int Wound J. 2023; 20(7): 2551-2562. doi: 10.1111/iwj.14119
19. Sari NMA, Saputro ID, Hutagalung MR. Vascular endothelial growth factor, epidermal growth factor, and epithelialization analysis on full-thickness wound applied with topical erythropoietin. Open Access Macedonian Journal of Medical Sciences. 2022; 10(B): 915-919. doi: 10.3889/oamjms.2022.8476
20. Janani G, Zhang L, Badylak SF, Mandal BB. Silk fibroin bioscaffold from Bombyx mori
and Antheraea assamensis elicits a distinct host response and macrophage activation
paradigm in vivo and in vitro. Biomater Adv. 2023; 145: 213223.
doi: 10.1016/j.bioadv.2022.213223
21. Aitcheson SM, FrentiuTa FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing:
Normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules.
2021; 26: 4917–4928. doi: 10.3390/molecules26164917
22. Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017; 62: 353-364. doi: 10.1007/978-3-319-54090-0_14
23. Tan S, Dosan R. Lessons from epithelialization: The reason behind moist wound environment. Open Dermatol J. 2019; 13: 1-5
24. Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment
strategies to accelerate wound healing: trajectory and recent advancements. Cells.
2022; 11(15): 2439. doi: 10.3390/cells11152439
25. Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized
dressing releasing flavonoids facilitates scarfree healing. Front Med (Lausanne). 2022; 9:
978120.
26. Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. In: StatPearls. Treasure
Island (FL): StatPearls Publishing; 2024.
27. Park JW, Hwang SR, Yoon IS. Advanced growth factor delivery systems in wound
management and skin regeneration. Molecules. 2017; 22(8): 1259
28. Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the
behavior of macrophages in wound healing. Biomed Pharmacother. 2023; 165: 115199.
29. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The Role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018; 9: 419. doi: 10.3389/fphys.2018.00419
30. Bae ON, Noh M, Chun YJ, Jeong TC. Keratinocytic vascular endothelial growth factor as a novel biomarker for pathological skin condition. Biomol Ther (Seoul). 2015; 23(1): 12–18.
31. Liu ZL, Chen HH, Zheng LL, et al. Angiogenic signaling pathways and anti-angiogenic
therapy for cancer. Sig Transduct Target Ther. 2023; 8: 198.
32. Devery AM, Wadekar R, Bokobza SM, Weber AM, Jiang Y, Ryan AJ. Vascular endothelial
growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer. Int
J Oncol. 2015; 47: 849-856.
33. Guo D, Wang Q, Li C, Wang Y, Chen X. VEGF stimulated the angiogenesis by promoting the
mitochondrial functions. Oncotarget. 2017; 8(44): 77020-77027.
34. Belvedere R, Novizio N, Morello S, Petrella A. The combination of mesoglycan and VEGF skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Sci Rep. 2022; 12(1): 11041. doi: 10.1038/s41598-022-15227-1
35. Abdulazeem L, Tariq A, Abdalkareem Jasim S. An investigation of vascular endothelial
growth factor (VEGFR-1 and VEGFR-2) in Burn Wound Healing. Arch Razi Inst. 2022;
77(2): 747-751. doi: 10.22092/ARI.2022.356981.1954
36. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and
development. Cell. 2019; 176(6): 1248-1264.
37. Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancerinduced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol.
2023; 949: 175586.
38. Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-Mediated physiological
function and pathological role. Front Cell Dev Biol. 2020; 8: 599281.
doi: 10.3389/fcell.2020.599281
39. Everts PA, Lana JF, Onishi K, et al. Angiogenesis and tissue repair depend on platelet dosing and bioformulation strategies following orthobiological platelet-rich plasma procedures: A narrative review. Biomedicines.2023; 11(7): 1922. doi: 10.3390/biomedicines11071922
40. Tsuji-Tamura K, Ogawa M. Morphology regulation in vascular endothelial cells.
Inflamm Regener. 2018; 38: 25. doi: 10.1186/s41232-018-0083-8
41. Park SA, Jeong MS, Ha KT, Jang SB. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep. 2018; 51(2): 73-78.
doi: 10.5483/bmbrep.2018.51.2.233
42. Guo X, Yi H, Li TC, Wang Y, Wang H, Chen X. Role of Vascular Endothelial Growth Factor
(VEGF) in human embryo implantation: clinical implications. Biomolecules. 2021; 11(2): 253.
doi: 10.3390/biom11020253
43. Shams F, Moravvej H, Hosseinzadeh S, et al. Overexpression of VEGF in dermal fibroblast
cells accelerates the angiogenesis and wound healing function: In vitro and in vivo studies. Sci
Rep. 2022; 12(1): 18529. doi: 10.1038/s41598-022-23304-8
44. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J,Li Y, Wang X, Zhao L. Inflammatory responses
and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6): 7204-7218.
doi: 10.18632/oncotarget.23208
45. Honnegowda TM, Kumar P, Udupa EGP, Kumar S, Kumar U, Rao P. Role of angiogenesis and
angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015; 2: 243-249.
46. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: An inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;
23(2): 95–121. doi: 10.1111/micc.12259
47. Hong H, Tian XY. The role of macrophages in vascular repair and regeneration after ischemic
injury. Int J Mol Sci. 2020; 21(17): 6328. doi: 10.3390/ijms21176328
48. Lai YS, Wahyuningtyas R, Aui SP, Chang KT. Autocrine VEGF signalling on M2
macrophages regulates PD-L1 expression for immunomodulation of T cells. J Cell Mol Med.
2019; 23(2): 1257–1267. doi: 10.1111/jcmm.14027

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Majalah Kedokteran Gigi Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.