Silkworm cocoon (Bombyx mori) accelerates wound healing in skin excision: a study on macrophage and VEGF

https://doi.org/10.22146/majkedgiind.87352

Sudirman Sudirman(1), Cahya Yustisia Hasan(2*), Pingky Krisna Arindra(3)

(1) Oral and Maxillofacial Surgery Specialty Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Departement of Oral and Maxillofacial Surgery, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Departement of Oral and Maxillofacial Surgery, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Silkworm cocoon (Bombyx mori) is a natural polymer composite and largely used as bio-functional material for wound healing. It consists of fibroin and sericin protein that has antibacterial effect. This study aimed to investigate the effect of silkworm cocoons (Bombyx mori) wound dressing on the number of macrophages and VEGF expression in skin excision. The subject of this study was 12 Wistar rats, which were grouped based on the duration of wound dressing application (3rd day and 6th day) and the use of dressing materials (n = 6). The rats were anesthetized with ketamin and xylazine prior to wound excision. A punch biopsy wound excision with 4 mm diameter of subcutaneous depth was made on both sides of the rat’s back, with the right side dressed with silkworm cocoon as the treatment group and the left side dressed with moist gauze application as the control group. Hematoxylin-eosin (HE) staining was performed to observe the number of macrophage cells. Immunohistochemical staining using an anti-VEGF antibody was performed to observe the expression of VEGF. Data were analyzed using a two-way ANOVA and an Independent t-test with confidence interval of 95%. Statistical analysis demonstrated a significantly higher number of macrophages in the silkworm cocoon wound dressing group on 6 days post-application (p = 0.026) and significantly higher VEGF expression in the silkworm cocoon wound dressing group on 3 days post-application (p = 0.002) and on 6 days post-application (p = 0.044). Silkworm cocoon (Bombyx mori) wound dressing can increase the number of macrophages and VEGF expression in wound excision model in Wistar rat.

Keywords


Bombyx mori; macrophage; skin wound excision; VEGF; wound dressing

Full Text:

Sudirman


References

1. Dhivya S, Padma VV, Santhini E. Wound dressings - A review. Biomedicine. 2015; 5(4):
22. doi: 10.7603/s40681-015-0022-9

2. Chabra S, Chhabra N, Kaur A, Gupta N. Wound healing concepts in clinical practice of
OMFS. J Maxillofac Oral Surg. 2017; 16(4): 403-423. doi: 10.1007/s12663-016-0880-z

3. Yu R, Jiang X, Wang X, Zhang B. The application of aesthetic surgery technology
based on facial trauma. Indian J Pharm Sci. 2019; 81(4): 144–150.

4. Kopecki Z, Cowin AJ. Fighting chronic wound infection – One model at a time. Wound Pract
Res. 2017; 25(1): 6–13.

5. Kamalathevan P, Ooi PS, Loo YL. Silkbased biomaterials in cutaneous healing: A
systematic review. Adv Skin Wound Care. 2018; 31(12): 565–573.
doi: 10.1097/01.ASW.0000546233.35130.a9

6. Kaewkod T, Kumseewai P, Suriyaprom S, Intachaisri V, Cheepchirasuk N, Tragoolpua Y.
Potential therapeutic agents of Bombyx mori silk cocoon extracts from agricultural product
for inhibition of skin pathogenic bacteria and free radicals. PeerJ. 2024; 12: e17490.
doi: 10.7717/peerj.17490

7. Yu K, Lu F, Li Q, Chen HL, Lu BT, Liu JW, et al. In situ assembly of Ag nanoparticles (AgNPs)
on porous silkworm cocoon-based wound film: Enhanced antimicrobial and wound healing
activity. Sci Rep. 2017; 7(1): 2107–2019. doi: 10.1038/s41598-017-02270-6

8. Khalaf AA, Hassanen EI, Zaki AR, Tohamy AF, Ibrahim MA. Histopathological, immunohistochemical, and molecular studies for determination of wound age and vitality in
rats. Int Wound J. 2019; 16(6): 1416-1425. doi: 10.1111/iwj.13206

9. Oliveira Barud HG, Barud HS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos
DM, et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015; 128: 41–51. doi: 10.1016/j.carbpol.2015.04.007

10. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016; 73(20): 3861-3885. doi: 10.1007/s00018-016-2268-0

11. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade
MAC. Experimental models and methods for cutaneous wound healing assessment. Int J
Exp Pathol. 2020; 101(1-2): 21-37. doi: 10.1111/iep.12346

12. Choudhary V, Choudhary M, Bollag WB. Exploring skin wound healing models and the
impact of natural lipids on the healing process. Int J Mol Sci. 2024; 25(7): 3790.
doi: 10.3390/ijms25073790

13. Férnandez-Guarino M, Naharro-Rodriguez J, Bacci S. Disturbances in the skin homeostasis:
Wound healing, an undefined process. Cosmetics. 2024; 11(3): 90.
doi: 10.3390/cosmetics11030090

14. Chhabra S, Chhabra N, Kaur A, Gupta N. Wound Healing Concepts in Clinical Practice
of OMFS. J Maxillofac Oral Surg. 2017; 16(4): 403-423.

15. Grada A, Mervis J, Falanga V. Research techniques made simple: animal models of wound healing. J Invest Dermatol. 2018; 138(10): 2095-2105.e1. doi: 10.1016/j.jid.2018.08.005

16. Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model:
Contraction revisited. Wound Repair Regen. 2015; 23(6): 874–877. doi: 10.1111/wrr.12338

17. Subiantoro A, Utariani A, Susilo I. Expression of vascular endothelial growth factor (VEGF)
and new blood vessels formation on wound incision post ropivacaine administration in animal model. International Journal of Innovative Science and Research Technology. 2020; 5(7): 829-836. doi: 10.38124/IJISRT20JUL550

18. Gao X, Lu C, Miao Y, Ren J, Cai X. Role of macrophage polarisation in skin wound
healing. Int Wound J. 2023; 20(7): 2551-2562. doi: 10.1111/iwj.14119

19. Sari NMA, Saputro ID, Hutagalung MR. Vascular endothelial growth factor, epidermal growth factor, and epithelialization analysis on full-thickness wound applied with topical erythropoietin. Open Access Macedonian Journal of Medical Sciences. 2022; 10(B): 915-919. doi: 10.3889/oamjms.2022.8476

20. Janani G, Zhang L, Badylak SF, Mandal BB. Silk fibroin bioscaffold from Bombyx mori
and Antheraea assamensis elicits a distinct host response and macrophage activation
paradigm in vivo and in vitro. Biomater Adv. 2023; 145: 213223.
doi: 10.1016/j.bioadv.2022.213223

21. Aitcheson SM, FrentiuTa FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing:
Normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules.
2021; 26: 4917–4928. doi: 10.3390/molecules26164917

22. Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017; 62: 353-364. doi: 10.1007/978-3-319-54090-0_14

23. Tan S, Dosan R. Lessons from epithelialization: The reason behind moist wound environment. Open Dermatol J. 2019; 13: 1-5

24. Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment
strategies to accelerate wound healing: trajectory and recent advancements. Cells.
2022; 11(15): 2439. doi: 10.3390/cells11152439

25. Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized
dressing releasing flavonoids facilitates scarfree healing. Front Med (Lausanne). 2022; 9:
978120.

26. Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. In: StatPearls. Treasure
Island (FL): StatPearls Publishing; 2024.

27. Park JW, Hwang SR, Yoon IS. Advanced growth factor delivery systems in wound
management and skin regeneration. Molecules. 2017; 22(8): 1259

28. Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the
behavior of macrophages in wound healing. Biomed Pharmacother. 2023; 165: 115199.

29. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The Role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018; 9: 419. doi: 10.3389/fphys.2018.00419

30. Bae ON, Noh M, Chun YJ, Jeong TC. Keratinocytic vascular endothelial growth factor as a novel biomarker for pathological skin condition. Biomol Ther (Seoul). 2015; 23(1): 12–18.

31. Liu ZL, Chen HH, Zheng LL, et al. Angiogenic signaling pathways and anti-angiogenic
therapy for cancer. Sig Transduct Target Ther. 2023; 8: 198.

32. Devery AM, Wadekar R, Bokobza SM, Weber AM, Jiang Y, Ryan AJ. Vascular endothelial
growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer. Int
J Oncol. 2015; 47: 849-856.

33. Guo D, Wang Q, Li C, Wang Y, Chen X. VEGF stimulated the angiogenesis by promoting the
mitochondrial functions. Oncotarget. 2017; 8(44): 77020-77027.

34. Belvedere R, Novizio N, Morello S, Petrella A. The combination of mesoglycan and VEGF skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Sci Rep. 2022; 12(1): 11041. doi: 10.1038/s41598-022-15227-1

35. Abdulazeem L, Tariq A, Abdalkareem Jasim S. An investigation of vascular endothelial
growth factor (VEGFR-1 and VEGFR-2) in Burn Wound Healing. Arch Razi Inst. 2022;
77(2): 747-751. doi: 10.22092/ARI.2022.356981.1954

36. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and
development. Cell. 2019; 176(6): 1248-1264.

37. Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancerinduced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol.
2023; 949: 175586.

38. Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-Mediated physiological
function and pathological role. Front Cell Dev Biol. 2020; 8: 599281.
doi: 10.3389/fcell.2020.599281

39. Everts PA, Lana JF, Onishi K, et al. Angiogenesis and tissue repair depend on platelet dosing and bioformulation strategies following orthobiological platelet-rich plasma procedures: A narrative review. Biomedicines.2023; 11(7): 1922. doi: 10.3390/biomedicines11071922

40. Tsuji-Tamura K, Ogawa M. Morphology regulation in vascular endothelial cells.
Inflamm Regener. 2018; 38: 25. doi: 10.1186/s41232-018-0083-8

41. Park SA, Jeong MS, Ha KT, Jang SB. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep. 2018; 51(2): 73-78.
doi: 10.5483/bmbrep.2018.51.2.233

42. Guo X, Yi H, Li TC, Wang Y, Wang H, Chen X. Role of Vascular Endothelial Growth Factor
(VEGF) in human embryo implantation: clinical implications. Biomolecules. 2021; 11(2): 253.
doi: 10.3390/biom11020253

43. Shams F, Moravvej H, Hosseinzadeh S, et al. Overexpression of VEGF in dermal fibroblast
cells accelerates the angiogenesis and wound healing function: In vitro and in vivo studies. Sci
Rep. 2022; 12(1): 18529. doi: 10.1038/s41598-022-23304-8

44. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J,Li Y, Wang X, Zhao L. Inflammatory responses
and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6): 7204-7218.
doi: 10.18632/oncotarget.23208

45. Honnegowda TM, Kumar P, Udupa EGP, Kumar S, Kumar U, Rao P. Role of angiogenesis and
angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015; 2: 243-249.

46. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: An inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;
23(2): 95–121. doi: 10.1111/micc.12259

47. Hong H, Tian XY. The role of macrophages in vascular repair and regeneration after ischemic
injury. Int J Mol Sci. 2020; 21(17): 6328. doi: 10.3390/ijms21176328

48. Lai YS, Wahyuningtyas R, Aui SP, Chang KT. Autocrine VEGF signalling on M2
macrophages regulates PD-L1 expression for immunomodulation of T cells. J Cell Mol Med.
2019; 23(2): 1257–1267. doi: 10.1111/jcmm.14027



DOI: https://doi.org/10.22146/majkedgiind.87352

Article Metrics

Abstract views : 10 | views : 5

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics