Effect of force direction and masticatory force towards orthodontic tooth movement in rats


Cendrawasih Andusyana Farmasyanti(1*), Adibah Maulani(2)

(1) Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Private dental clinic, Surakarta, Central Java
(*) Corresponding Author


The aim of the research is to investigate the influence of coil spring directions and masticatory force on the amount of OTM. Materials and Methods. Thirty-six male Wistar rats (n = 36) were divided proportionally into two groups with (M) or without masticatory force (NM), treated with palatal coil type (PD) or labial coil (LD) using a costumed stainless steel coil spring to deliver 35 cN force for separating the two incisors in 10 days. The examination dates were day 0, day 5, and day 10. The tooth distance values were calculated by subtracting the distance measured at day 0 from examination days and presented in 8 groups: PD5NM, PD10NM, PD5M, PD10M, LD5NM, LD10NM, LD5M, and LD10M. The study’s results were analyzed using ANOVA followed by post hoc analyses. Result: All spring designs induced OTM. The OTM amounts from the lowest to the highest are PD5M, PD10NM, PD10M, LD5M, LD10M, LD5NM, PD5NM, and LD10NM, respectively: 0.26 mm; 0.06 mm; 0.25 mm; 0.44 mm; 0.58 mm; 0.9 mm; 0.97 mm; 1.03 mm, and 1.06 mm. The OTM distance was higher in the labial coil than in the palatal coil groups (p = 0.002). The amount of OTM in the masticatory group was lower than in the group without-masticatory force (p = 0.012), except in the day 10 palatal coil group. Conclusions: Masticatory force and force direction affected the amount of OTM. The labial coil induces more OTM than the palatal coil. Masticatory force decreased the OTM distance.


chewing; labial coil; palatal coil; orthodontic force

Full Text:



1. Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical
implications. Kaohsiung J Med Sci. 2018; 34(4): 207-214. doi: 10.1016/j.kjms.2018.01.007

2. Alhasyimi AA, Pudyani PP, Asmara W, Ana ID. Enhancement of post-orthodontic tooth
stability by carbonated hydroxyapatiteincorporated advanced platelet-rich fibrin in
rabbits. Orthod Craniofac Res. 2018; 21(2): 112–118. doi: 10.1111/ocr.12224

3. Indriasari V, Suparwitri S, Christnawati C, Alhasyimi AA. Different effects of soybean
isoflavone genistein on transforming growth factor levels during orthodontic tooth
movement among young and old rabbits. F1000Res. 2019; 8: 2074.
doi: 10.12688/f1000research.21211.2

4. Verna C, Dalstra M, Lee TC, Cattaneo PM, Melsen B. Microcracks in the alveolar bone
following orthodontic tooth movement: a morphological and morphometric study. Eur J
Orthod. 2004; 26(5): 459-467. doi: 10.1093/ejo/26.5.459

5. Ren Y, Maltha JC, Kuijpers-Jagtman AM. The rat as a model for orthodontic tooth movement-
-a critical review and a proposed solution. Eur J Orthod. 2004; 26(5): 483-490.
doi: 10.1093/ejo/26.5.483

6. Ren Y, Hazemeijer H, de Haan B, Qu N, de Vos P. Cytokine profiles in crevicular fluid
during orthodontic tooth movement of short and long durations. J Periodontol. 2007; 78(3):
453-458. doi: 10.1902/jop.2007.060261

7. Isaacson RJ, Lindauer SJ, Davidovitch M. On tooth movement. Angle Orthod. 1993; 63(4):
305-309. doi: 3/0003-3219(1993)063<0305:OTM>2.0.CO;2

8. Maulani A, Farmasyanti CA, Sutantyo D. The number of osteoblasts and osteoclasts in
hypofunctional teeth during orthodontic tooth movement in rats. F1000Research. 2022; 10:
541. doi: 10.12688/f1000research.53728.3

9. Khrisnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force.
Am J Orthod Dentofacial Orthop. 2006; 129(4): 469.e1–32. doi: 10.1016/j.ajodo.2005.10.007

10. Itohiya K, Kazaki H, Ishikawa M, Wada S, Miyamoto Y, Narimiya T, Nakamura Y. Occlusal hypofunction mediates alveolar bone apposition via relative augmentation of TGF-β signaling by decreased asporin production in rats. Dental Oral Craniofacial Res. 2016; 3(1): 1–8. doi: 10.15761/DOCR.1000192

11. Farmasyanti CA, Kujipers-Jagtman AM, Susilowati H. Effects of Pentagamavunon-0 (PGV-0) as alternative analgesics on orthodontic tooth movement in rats. Padjadjaran Journal of Dentistry. 2019; 31(3): 152–160. doi: 10.24198/pjd.vol31no3.20995

12. Drevensek M, Volk J, Sprogar S, Drevensek G. Orthodontic force decreases the eruption
rate of rat incisors. Eur J Orthod. 2009; 31(1): 46-50. doi: 10.1093/ejo/cjn078

13. Roberts-Harry D, Sandy J. Orthodontics. Part 11: orthodontic tooth movement. Br Dent J.
2004; 196(7): 391-394; doi: 10.1038/sj.bdj.4811129

14. Alhasyimi AA, Suparwitri S, Christnawati C. Effect of carbonate apatite hydrogeladvanced platelet-rich fibrin injection on osteoblastogenesis during orthodontic relapse in rabbits. Eur J Dent. 2021; 15(3): 412-419.

15. Ibrahim AY, Gudhimella S, Pandruvada SN, Huja SS. Resolving differences between
animal models for expedited orthodontic tooth movement. Orthod Craniofac Res. 2017;
20(1): 72-76. doi: 10.1111/ocr.12175

16. Drevensek M, Volk J, Sprogar S, Drevensek G. Orthodontic force decreases the eruption
rate of rat incisors. Eur J Orthod. 2009; 31(1): 46-50. doi: 10.1093/ejo/cjn078

17. Sari SP, Lubis MM, Yusuf M. Labial and palatal alveolar bone changes during maxillary
incisor retraction at the Universitas Sumatera Utara Dental Hospital. Dental Journal. 2022;
55(3): 148–153. doi: 10.20473/j.djmkg.v55.i3.p148-153

18. Singh G, Gupta H, Rathi A, Bisht D, Goyal V, Singh R, Dhawan S. The use of bite raisers in
orthodontic treatment –A review of literature. Acta Sci Dent Sci. 2021; 5(4): 219-228.

19. Shitano C, Baba O, Kaneko S, Hosomichi J, Shimizu Y, Shibutani N, Usumi-Fujita R,
Takano Y, Ono T. Alveolar bone loss induced by the orthodontic tooth movement under
hypofunctional conditions in rats. Orthodontic Waves. 2013; 72(4): 148-155.
doi: 10.1016/j.odw.2013.07.002

20. Esashika M, Kaneko S, Yanagishita M, Soma K. Influence of orthodontic forces
on the distribution of proteoglycans in rat hypofunctional periodontal ligament. J Med
Dent Sci. 2003; 50(2): 183-94.

21. Usumi-Fujita R, Hosomichi J, Ono N, Shibutani N, Kaneko S, Shimizu Y, Ono T.
Occlusal hypofunction causes periodontal atrophy and VEGF/VEGFR inhibition in tooth
movement. Angle Orthod. 2013; 83(1): 48-56. doi: 10.2319/011712-45.1

22. Prayudi YG, Farmasyanti CA, Suparwitri S. The number of blood vessels in tension
and pressure side ligament periodontal of hypofunctional teeth during orthodontic tooth
movement in rats. Teikyo Medical Journal. 2022; 45(1): 4323-4330.

DOI: https://doi.org/10.22146/majkedgiind.84085

Article Metrics

Abstract views : 811 | views : 443


  • There are currently no refbacks.

Copyright (c) 2023 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Currently, Majalah Kedokteran Gigi Indonesia indexed by:







 View My Stats

time web analytics