Effectiveness of MIST with hydroxyapatite and β-tricalcium phosphate in alveolar bone density and osteocalcin level improvement during treatment of infrabony pockets


Aulida Arum Mubarokah(1*), Ahmad Syaify(2), Sri Pramestri Lastianny(3)

(1) Periodontics Specialty Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author


The minimally invasive surgical technique (MIST) is a method for periodontal regenerative treatment by minimizing trauma so it can preserve vascular supply of the interdental papillae. This study aims to determine the effectiveness of the MIST method with the addition of a combination of hydroxyapatite and β-tricalcium phosphate (HA + β-TCP) in treatment of infrabony pockets in terms of alveolar bone density and osteocalcin levels of gingival crevicular fluid. The study sample was taken from 20 teeth with infrabony pockets (n = 20), which were divided into two groups: 10 teeth treated with MIST and the other group with open flap debridement (OFD). Both groups received combination of HA + β-TCP. The osteocalcin levels of gingival crevicular fluid were checked on day-0 prior to the flap surgery, day-7 and day-14 after flap surgery using the Human Osteocalcin Elisa Kit. Radiological evaluation of alveolar bone density at day-0 and day-90 was done using cone beam computed tomography. Data of osteocalcin levels were analyzed using two-way ANOVA and continued with LSD Post Hoc test, while data of alveolar bone density reduction were analyzed using the Independent t-test parametric test. The results showed that there was no significant difference (p > 0.05) in the values of alveolar bone density between the MIST and OFD groups on day-0 and day-90, while the osteocalcin levels in both groups showed an increase from day-0 to day-7 and a decrease from day-7 to day-14. There was a significant difference (p < 0.05) on day-0 and 7 and day-7 and 14 between MIST and OFD groups. The MIST method with HA + β-TCP was effective and further increases alveolar bone density and osteocalcin levels of gingival crevicular fluid.


alveolar bone density; infrabony pocket; MIST; osteocalcin

Full Text:



1. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, Taylor R. Periodontitis and diabetes: a two-way relationship. Diabetologia. 2012; 55(1): 21–31. doi: 10.1007/s00125-011-2342-y

2. Dhonge RP, Vishwakarma A. Successful management of three‑wall periodontal intrabony defect using novabone dental putty®. Indian J Dent Sci. 2018; 10(3): 172–175. doi: 10.4103/IJDS.IJDS_8_18

3. Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: a comprehensive review. Jpn Dent Sci Rev. 2019; 55(1): 26–32.
doi: 10.1016/j.jdsr.2018.09.003

4. Raghavan R, Pa S, Raj JS, Raju R, Vs M. Review on recent advancements of bone regeneration in dental implantology. Int J Appl Dent Sci. 2018; 4(2): 161–163.

5. Dewi AH, Ana ID. The use of hydroxyapatite bone substitute grafting for alveolar ridge
preservation, sinus augmentation, and periodontal bone defect: a systematic review.
Heliyon. 2018; 4(10): e00884. doi: 10.1016/j.heliyon.2018.e00884

6. Groeneveld EHJ, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol. 2000; 142(1): 9–21. doi: 10.1530/eje.0.1420009

7. Shukla S, Chug A, Mahesh L, Singh S, Singh K. Optimal management of intrabony defects:
current insights. Clin Cosmet Investig Dent. 2019; 11: 19–25. doi: 10.2147/CCIDE.S166164

8. Karthikeyan J, Vijayalakshmi R, Mahendra J. Minimally invasive techniques for periodontal
regenerative therapy- an overview. Int J Recent Sci Res. 2017; 8(4): 16503–16509.
doi: 10.24327/ijrsr.2017.0804.0161

9. Reddy SM, Abdelmagyd HA, Shetty SR, Khazi SS, Vannala VR. Minimal invasive periodontal surgery: a review. Journal of Dentomaxillofacial Science. 2017; 2(2): 81-85. doi: 10.15562/jdmfs.v2i2.522

10. Kotsilkov K. Minimally invasive single flap approach with connective tissue wall for
periodontal regeneration. J of IMAB. 2017; 23(3): 1673–1680. doi: 10.5272/jimab.2017233.1673

11. Taba M, Kinney J, Kim AS, Giannobile WV. Diagnostic biomarkers for oral and periodontal
diseases. Dent Clin North Am. 2005; 49(3): 551–571. doi: 10.1016/j.cden.2005.03.009

12. Bizelli-Silveira C, Pullisaar H, Abildtrup LA, Andersen OZ, Spin-Neto R, Foss M, Kraft
DCE. Strontium enhances proliferation and osteogenic behavior of periodontal ligament
cells in vitro. J Periodontal Res. 2018; 53(6): 1020–1028.

13. Dahlan MS. Statistik untuk Kedokteran dan Kesehatan. Jakarta: Salemba Medika; 2011.

14. Emadi N, Safi Y, Bagheban AA, Asgary S. Comparison of CT-number and gray scale
value of different dental materials and hard tissues in CT and CBCT. Iran Endod J. 2014;
9(4): 283–286.

15. Kamaruddin N, Rajion ZA, Yusof A, Aziz ME. Relationship between Hounsfield unit in CT scan and gray scale in CBCT. AIP Conf Proc. 2016;1791(1). doi: 10.1063/1.4968860

16. Singh VP, Nayak DG, Uppoor AS, Shah D. Clinical and radiographic evaluation of
Nano-crystalline hydroxyapatite bone graft (Sybograf®) in combination with bioresorbable
collagen membrane (Periocol®) in periodontal intrabony defects. Dent Res J (Isfahan). 2012;
9(1): 60-70. doi: 10.4103/1735-3327.92945

17. Bansal R, Patil S, Chaubey KK, Thakur RT, Goyel P. Clinical evaluation of hydroxyapatite
and β-tricalcium phosphate composite graft in the treatment of intrabony periodontal defect:
A clinico-radiographic study. J Indian Soc Periodontol. 2014; 18(5): 610–617.
doi: 10.4103/0972-124X.142455

18. Duque Netto H, Miranda Chaves M das GA, Aatrstrup B, Guerra R, Olate S. Bone formation in maxillary sinus lift using autogenous bone graft at 2 and 6 months. Int J Morphol. 2016;
34(3): 1069–1075. doi: 10.4067/S0717-95022016000300041

19. Thor A, Franke-Stenport V, Johansson CB, Rasmusson L. Early bone formation in human
bone grafts treated with platelet-rich plasma: preliminary histomorphometric results. Int J
Oral Maxillofac Surg. 2007; 36(12): 1164–1171. doi: 10.1016/j.ijom.2007.05.023

20. Shazam H, Shaikh F, Hussain Z. Bone turnover markers in chronic periodontitis: a
literature review. Cureus. 2020; 12(1): 1–9. doi: 10.7759/cureus.6699

21. Bullon P, Chandler L, Egea JJS, Cano RP, Sahuquillo AM. Osteocalcin in serum, saliva
and gingival crevicular fluid: their relation with periodontal treatment outcome in postmenopausal women. Med Oral Patol Oral Cir Bucal. 2007; 12(3): 154–158.

22. Banthia R, Dongre M, Ritika R, Banthia P. Minimally invasive techniques for regenerative
therapy. J Interdiscip Dentistry. 2016; 6(2): 56-59. doi: 10.4103/2229-5194.197662

23. Bathla S. Textbook of Periodontology. Jaypee Brothers Medical Publishers (P) LTD; 2017.

24. Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: a biomaterial
perspective. Bioact Mater. 2020; 5(2): 297–308. doi: 10.1016/j.bioactmat.2020.02.012

25. Newman MG, Takei H, Klokkevold PR, Carranza FA. Carranza’s Clinical Periodontology, 11th ed. Missouri: Elsevier Saunders; 2012. 128, 305.

26. Okada T, Kanai T, Tachikawa N, Munakata M, Kasugai S. Histological and histomorphometrical determination of the biogradation of β-Tricalcium phosphate granules in maxillary sinus floor augmentation: a prospective observational study. Implant Dent. 2017; 26(2): 275–283. doi: 10.1097/ID.0000000000000577

27. Bucchi C, Borie E, Arias A, Dias FJ, Fuentes R. Radiopacity of alloplastic bone grafts
measured with cone beam computed tomography: an analysis in rabbit calvaria.
Bosn J Basic Med Sci. 2017; 17(1): 61–66. doi: 10.17305/bjbms.2016.1482

28. Fujita R, Yokoyama A, Nodasaka Y, Kohgo T, Kawasaki T. Ultrastructure of ceramic-bone
interface using hydroxyapatite and β-tricalcium phosphate ceramics and replacement
mechanism of β-tricalcium phosphae in bone. Tissue Cell. 2003; 35(6): 427–440.
doi: 10.1016/s0040-8166(03)00067-3

29. Annibali S, Lezzi G, Sfasciotti GL, Cristalli MP, Vozza I, Mangano C, Monaca GL, Polimeni
A. Histological and histomorphometric human results of HA-Beta-TCP 30/70 compared to
three different biomaterials in maxillary sinus augmentation at 6 months: A preliminary
report. Biomed Res Int. 2015; 2015: 156850.
doi: 10.1155/2015/156850

DOI: https://doi.org/10.22146/majkedgiind.63524

Article Metrics

Abstract views : 583 | views : 487


  • There are currently no refbacks.

Copyright (c) 2022 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Currently, Majalah Kedokteran Gigi Indonesia indexed by:







 View My Stats

time web analytics