Perbandingan hasil pengukuran pada citra Cone Beam Computed Tomography (CBCT) dengan objek sesungguhnya
Ratihana Nurul Indias(1*), Rurie Ratna Shantiningsih(2), Rini Widyaningrum(3), Munakhir Mudjosemedi(4)
(1) Program Studi Pendidikan Dokter Gigi, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(2) Departemen Radiologi Dentomaksilofasial, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(3) Departemen Radiologi Dentomaksilofasial, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(4) Departemen Radiologi Dentomaksilofasial, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author
Abstract
The distance comparison of Cone Beam Computed Tomography (CBCT) image with the real object. Dentist use radiographs to establish diagnosis, treatment plan, prognosis, as well as to evaluate patient’s treatment. Accurate anatomical dimension is a pivotal point in radiography, especially in the field of oral surgery and dental implant planning. The information about distortion in radiograph is very important to prevent any misdiagnosis and incorrect treatment plan. The purpose of this study was to compare the metal marker distance in CBCT image with the real measurement in dried mandibles. Samples in this study were 40 CBCT images of human dried mandibles, which were produced by using Volux 3D dental CT (Genoray, Korea, 60 kVp, 60 mAs, 10s). Horizontal, vertical, and oblique measurements on CBCT image were done by using Volux 3D dental CT software (GDP-1 software Triana). The
measurement on CBCT image was compared with the real measurement by using Wilcoxon signed rank test. Image distortion was calculated by subtracting the metal marker distance obtained from CBCT images by the real distance obtained by a direct measurement on dried mandible. The distortion was expressed as a percentage. There were some significant differences (p<0.05) between metal marker distance on CBCT image with a direct measurement in dried mandibles, except oblique measurements on anterior mandibular body that was done without involving mandibular base. The maximal distortion on panoramic view of CBCT image in this study was 8%, and the distortion was different in each part of the mandible.
ABSTRAK
Pemeriksaan radiografi diperlukan oleh dokter gigi untuk menetapkan diagnosis, rencana perawatan, prognosis, dan evaluasi hasil perawatan. Radiograf yang memiliki ketepatan dimensi anatomi diperlukan pada tindakan bedah dan pemasangan implan. Informasi mengenai distorsi hasil pengukuran pada radiograf diperlukan untuk mencegah kesalahan penetapan diagnosis dan rencana perawatan. Penelitian ini bertujuan untuk mengetahui perbandingan jarak metal marker pada pengukuran horizontal, vertikal, dan oblique citra Cone Beam Computed Tomography (CBCT) dengan objek sesungguhnya pada preparat mandibula kering. Sampel penelitian berupa 40 citra CBCT preparat mandibula kering yang dihasilkan oleh mesin Volux 3D dental CT (Genoray, Korea) dengan menggunakan tegangan 60 kVp, kuat
arus 60 mAs, dan waktu paparan 10 detik. Pengukuran pada citra CBCT dilakukan dengan mengukur jarak terjauh antara kedua metalmarker secara horizontal, vertikal, dan oblique menggunakan software Volux 3D dental CT (GDP-1 software Triana). Hasil pengukuran pada citra CBCT dibandingkan dengan hasil pengukuran pada preparat mandibula dan dianalisis dengan menggunakan wilcoxon signed rank test. Distorsi dihitung dari perubahan hasil pengukuran pada citra CBCT dibagi dengan ukuran sesungguhnya pada objek, dan dinyatakan dalam satuan persen (%). Hasil penelitian menunjukkan adanya perbedaan yang bermakna (p<0,05) antara hasil pengukuran jarak metal marker pada citra CBCT dibandingkan dengan objek sesungguhnya pada preparat mandibula kering, kecuali hasil pengukuran oblique tanpa
melibatkan basis mandibula di bagian anterior mandibula. Rerata distorsi tertinggi pada citra CBCT panoramic view sebesar 8%, dengan nilai distorsi yang berbeda pada setiap bagian mandibula.
Keywords
Full Text:
PDF5References
1. Basrani B. Endodontic radiology, 2nd ed. Wiley & Sons, Inc. Oxford; 2012. 193.
2. Loubele M, Eugenia GM, Jacobs R, Suetens P, Steenberghe D. A comparison of jaw dimensional and quality assessments of bone characteristics with cone-beam ct, spiral tomography, and multi-slice spiral CT. Int. J. Oral Max. Impl. 2007; 22(3): 446 – 454.
3. White SC, Pharoah MJ. Oral radiology principles and interpretation. 6th ed.Elsevier. China; 2009. 46, 78, 109, 175, 256, 600, 602.
4. Iannucci JM, Howerton LJ. Dental radiography: principles and techniques, 4th ed. Elsevier.
USA; 2012. 83, 111 – 112, 313 – 321.
5. Froum SJ. Dental implant complications 1th ed. Wiley-Blackwell. Oxford; 2010. 98 – 99.
6. Izzati L, Rahman S, Alam MK, Daud F. Validity of Cone Beam Computed Tomography (CBCT) on estimation of implant fixture length. Int. Med. J. 2013; 20(3): 355 – 358.
7. Karjodkar FR. Textbook of dental and maxillofacial radiology. Jaypee. New Delhi.
2006; 66, 75, 227.
8.Mudjosemedi M, Widyaningrum R, Gracea RS. Perbedaan hasil pengukuran tulang mandibula pada radiograf panoramik dan 3D Dental CT, Laporan Penelitian. Fakultas Kedokteran Gigi Universitas Gadjah Mada. Yogyakarta. 2012; 1 – 49.
9.Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac. Rad. 2008; (37): 10 – 17.
10. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional
measurements using cone-beam CT. Dentomaxillofac. Rad. 2006; (35): 10 – 416.
11. Sakabe J, Kuroki Y, Fujimaki S, Nakajima I, Honda K. Reproducibility and accuracy of
measuring unerupted teeth using limited cone beam X-ray CT. Dentomaxillofac. Rad. 2007;
36: 2 – 6.
12. Lagravère MO, Carey J, Toogood RW, Majord PW. Three-dimensional accuracy of
measurements made with software on conebeam computed tomography images. Am. J. Orthod. Dentofacial Orthop. 2008; (34): 112 – 116.
13. Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, Lambrichts I, Steenberghe D,
Suetens P. Image quality VS radiation dose of four cone beam computed tomography scanners. Dentomaxillofac. Rad. 2008; 37: 309 – 318.
14. Mangione F, Meleo D, Talocco M, Pecci R, Pacifici L, Bedini R. Comparative evaluation of
the accuracy of linear measurements between cone beam computed tomography and 3D
microtomography. Ann Ist Super Sanità. 2013; 49(3): 261 – 265.
15. Cremonini CC, Dumas M, Pannuti CM, Neto JB, Cavalcanti MG, Lima LA. Assessment of
linear measurements of bone for implant sites in the presence of metallic artefacts using cone
beam computed tomography and multislice computed tomography. Int. J. Oral Maxillofac.
Surg. 2011; 40(8): 845 – 850.
16. Whaites E. Essential of dental radiography and radiology 5th ed. Elsevier. China; 2013. 3: 193 – 195, 206 – 207.
17. Ballrick JW, Palomo JM, Ruch E, Amberman BD, Hanse MG. Image distortion and spatial
resolution of a commercially available conebeam computed tomography machine. Am. J. Orthod. Dentofacial. 2008; 134: 573 – 582.
18. Sforza NM, Franchini F, Lamma A, Botticelli S, Ghigi G. Accuracy of computerized tomography for the evaluation of mandibular sites prior to implant placement. Int. J. Periodont. Rest. 2007; 27(6): 589 – 595.
DOI: https://doi.org/10.22146/majkedgiind.15240
Article Metrics
Abstract views : 5342 | views : 16384Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Majalah Kedokteran Gigi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.