Polyvinyl alcohol–collagen–hydroxyapatite composite membrane derived from Lates calcarifer for alveolar socket preservation

https://doi.org/10.22146/majkedgiind.106147

Yessy Ariesanti(1*), Imanda Vyatri Dewi(2), Basril Abbas(3)

(1) Departement of Oral and Maxillofacial Surgery Faculty of Dentistry Univeritas Trisakti, Jakarta, Indonesia
(2) Undergraduate Program, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
(3) National Research and Innovation Agency (BRIN), Jakarta, Indonesia
(*) Corresponding Author

Abstract


Alveolar socket preservation (ASP) requires an ideal barrier membrane that provides anti-bacterial activity, water contact angle (WCA) and swelling behavior to support bone regeneration. This study evaluated these characteristics in a Polyvinyl Alcohol-Collagen-Hydroxyapatite composite membranes derived from the scales of Lates calcarifer.L. The PVA-Col-HA CM was produced from the scales of Lates calcarifer through mixing, homogenization, casting, and drying and then divided into three groups: non-irradiated, 15 kGy irradiation, and 25 kGy irradiation. Antibacterial activity was assessed by disk-diffusion test and inhibition zone diameters were measured. Water contact angle was determined using a contact angle goniometer on both membrane surfaces. Swelling behavior was evaluated by immersing samples in phosphate-buffered saline for 60 minutes, followed by periodic weighing and calculation using a swelling formula. The anti-bacterial activity test showed a larger zone of inhibition in the 25 kGy group by 2mm on Escherichia coli and Staphylococcus aureus. One-way ANOVA test of WCA values showed significant differences (p < 0.05) among groups, with the 25 kGy group exhibiting the highest hydrophilicity. Analysis of swelling behavior using ANOVA and Kruskal-wallis test showed no significant differences (p > 0.05) among groups, but the linear graph shows that the 25kGy group displayed the lowest and most stable swelling profile. These findings suggest that the PVA-Col-HA CM exhibited favorable anti-bacterial activity, WCA, and swelling behavior, with optimal performance observed in the 25 kGy irradiation group.


Keywords


alveolar socket preservation; anti-bacterial activity; PVA-Col-HA composite membrane; swelling behavior; water contact angle

Full Text:

6. Yessy Ariesanti


References

  1. Blanco J, Carral C, Argibay O, Liñares A. Implant placement in fresh extraction sockets. Periodontology 2000. Blackwell Munksgaard. 2019; 79(1): 151–167. doi: 10.1111/prd.12253
  2. Tonetti MS, Jung RE, Avila-Ortiz G, Blanco J, Cosyn J, Fickl S, et al. Management of the extraction socket and timing of implant placement: Consensus report and clinical recommendations of group 3 of the XV European Workshop in Periodontology. J Clin Periodontol. 2019; 46(S21): 183–194. doi: 10.1111/jcpe.13131
  3. Nisar N, Nilesh K, Parkar MI, Punde P. Extraction socket preservation using a collagen plug combined withplatelet-rich plasma (PRP): A comparative clinico-radiographic study. J Dent Res Dent Clin Dent Prospects. 2020; 14(2): 139–145. doi: 10.34172/joddd.2020.028
  4. Laurito D, Cugnetto R, Lollobrigida M, Guerra F, Vestri A, Gianno F, et al. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal. Int J Periodontics Restorative Dent. 2016; 36(6): 877–883. doi: 10.11607/prd.2114
  5. Sasaki JI, Abe GL, Li A, Thongthai P, Tsuboi R, Kohno T, et al. Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent. 2021; 8(1): 54–63. doi: 10.1080/26415275.2021.1925556
  6. Dikici BA, Dikici S, Reilly GC, MacNeil S, Claeyssens F. A novel bilayer polycaprolactone membrane for guided bone regeneration: Combining electrospinning and emulsion templating. Materials. 2019; 12(16): 2643. doi: 10.3390/ma12162643
  7. Li J, Hu Y, He T, Huang M, Zhang X, Yuan J, et al. Electrospun sandwich-structure composite membranes for wound dressing scaffolds with high antioxidant and antibacterial activity. Macromol Mater Eng. 2018; 303(2): 1700270. doi: 10.1002/mame.201700270
  8. Zhang H, Ma H, Zhang R, Wang K, Liu J. Construction and characterization of antibacterial PLGA/wool keratin/ornidazole composite membranes for periodontal guided tissue regeneration. J Biomater Appl. 2020; 34(9): 1267–8121. doi: 10.1177/0885328220901396
  9. Minetti E, Celko M, Contessi M, Carini F, Gambardella U, Giacometti E, et al. Implants survival rate in regenerated sites with innovative graft biomaterials: 1 year follow-up. Materials. 2021; 14(18): 5292. doi: 10.3390/ma14185292
  10. Pereira IC, Duarte AS, Neto AS, Ferreira JMF. Chitosan and polyethylene glycol based membranes with antibacterial properties for tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019; 96: 606–615. doi: 10.1016/j.msec.2018.11.029
  11. Raz P, Brosh T, Ronen G, Tal H. Tensile properties of three selected collagen membranes. Biomed Res Int. 2019; 2019. 5163603. doi: 10.1155/2019/5163603
  12. Liu H, Liu X, Zhao F, Liu Y, Liu L, Wang L, et al. Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. J Colloid Interface Sci. 2020; 562: 182–192. doi: 10.1016/j.jcis.2019.12.017
  13. Du J, Wang G, Song D, Jiang J, Jiang H, Gao J. In-vitro degradation behavior and biocompatibility of superhydrophilic hydroxyapatite coating on Mg–2Zn–Mn–Ca–Ce alloy. Journal of Materials Research and Technology. 2022; 17: 2742–2754. doi: 10.1016/j.jmrt.2022.01.155
  14. Zhang L, Dong Y, Zhang N, Shi J, Zhang X, Qi C, et al. Potentials of sandwich-like chitosan/polycaprolactone/gelatin scaffolds for guided tissue regeneration membrane. Materials Science and Engineering C. 2020; 109: 110618. doi: 10.1016/j.msec.2019.110618
  15. Yu S, Shi J, Liu Y, Si J, Yuan Y, Liu C. A mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticle composite membrane for guided bone regeneration. J Mater Chem B. 2019; 7(20): 3279–3290. doi: 10.1039/C9TB00417C
  16. Abdelaziz D, Hefnawy A, Al-Wakeel E, El-Fallal A, El-Sherbiny IM. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res. 2021; 28: 51–62. doi: 10.1016/j.jare.2020.06.014
  17. Ariesanti Y. Increase of fibroblast proliferation by composite membrane (Polyvinyl Alcohol-Collagen-Hydroxyapatite). 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), Medan, Indonesia. 2021: 1-5. doi: 10.1109/InHeNce52833.2021.9537256
  18. Ariesanti Y, Octavianus PGM, Handayani AT, Abbas B. Characterization of polyvinyl alcohol–collagen–hydroxyapatite composite membrane from lates calcarifer scales for guided tissue and bone regeneration. Eur J Dent. 2023; 17(4): 1153-1162. doi: 10.1055/s-0042-1759488
  19. He Z, Zhou X, Wang Y, Lin J, Huang S, Hu R, et al. Asymmetric barrier membranes based on polysaccharide micro-nanocomposite hydrogel: Synthesis, characterization, and their antibacterial and osteogenic activities. Carbohydr Polym. 2021; 273: 118525. doi: 10.1016/j.carbpol.2021.118525
  20. Florjanski W, Orzeszek S, Olchowy A, Grychowska N, Wieckiewicz W, Malysa A, et al. Modifications of polymeric membranes used in guided tissue and bone regeneration. 2019; 11(5): 782. doi: 10.3390/polym11050782
  21. Chen S, Gao J, Yan E, Wang Y, Li Y, Lu H, et al. A novel porous composite membrane of PHA/PVA via coupling of electrospinning and spin coating for antibacterial applications. Mater Lett. 2021; 301: 130279. doi: 10.1016/j.matlet.2021.130279
  22. Xu Z, Xu Y, Basuthakur P, Patra CR, Ramakrishna S, Liu Y, et al. Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis. J Mater Chem B. 2020; 8(39): 9110–9120. doi: 10.1039/D0TB01715A
  23. Wang J, Zhan L, Zhang X, Wu R, Liao L, Wei J. Silver nanoparticles coated poly(L-Lactide) electrospun membrane for implant associated infections prevention. Front Pharmacol. 2020; 11: 431. doi: 10.3389/fphar.2020.00431
  24. Gao Y, Wang S, Shi B, Wang Y, Chen Y, Wang X, et al. Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: a review. Polymers. 2022; 14(5): 871. doi: 10.3390/polym14050871
  25. Ramana Ramya J, Thanigai Arul K, Sathiamurthi P, Asokan K, Narayana Kalkura S. Novel gamma irradiated agarose-gelatin-hydroxyapatite nanocomposite scaffolds for skin tissue regeneration. Ceram Int. 2016; 42(9): 11045–11054. doi: 10.1016/j.ceramint.2016.04.001
  26. Silva-Holguín PN, Reyes-López SY. Synthesis of Hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response. 2020; 18(3): 1559325820951342. doi: 10.1177/1559325820951342
  27. Rehman MUR, Qureshi A, Baloch MM. Extraction of hydroxyapatite from caprine bones and its anti-bacterial study. Mehran University Research Journal of Engineering and Technology. 2021; 40(4): 867–873. doi: 10.22581/muet1982.2104.16
  28. Shah AT, Zahid S, Ikram F, Maqbool M, Chaudhry AA, Rahim MI, et al. Tri-layered functionally graded membrane for potential application in periodontal regeneration. Mater Sci Eng C Mater Biol Appl. 2019; 103: 109812. doi: 10.1016/j.msec.2019.109812
  29. Soltani Dehnavi S, Mehdikhani M, Rafienia M, Bonakdar S. Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Mater Sci Eng C Mater Biol Appl. 2018; 90: 236–247. doi: 10.1016/j.msec.2018.04.065
  30. Kim S, Jeong JO, Lee S, Park JS, Gwon HJ, Jeong SI, et al. Effective gamma-ray sterilization and characterization of conductive polypyrrole biomaterials. Sci Rep. 2018; 8(1): 3721. doi: 10.1038/s41598-018-22066-6
  31. Santos SC, Spaniol KG, Chaves-Silva NE, Fernandes RPM, Tavares DS, Acchar W, et al. Copper-containing bioactive glass/PVA membranes for guided bone regeneration. J Non Cryst Solids. 2021; 557: 120628. doi: 10.1016/j.jnoncrysol.2020.120628
  32. Suroto H, Aryawan DM, Prakoeswa CA. The influence of the preservation method and gamma irradiation sterilization on TGF- β and bFGF levels in freeze-dried amnion membrane (FD-AM) and amnion sponge. Int J Biomater. 2021; 2021(1): 6685225. doi: 10.1155/2021/6685225
  33. Ahmad Z, Eslami F, Khaliqin A, Wahab A. Swelling properties of gamma irradiated starch based hydrogel dressing. IJISET-International Journal of Innovative Science, Engineering & Technology. 2015; 2(8): 933-936.
  34. Tran Vo TM, Piroonpan T, Preuksarattanawut C, Kobayashi T, Potiyaraj P. Characterization of pH-responsive high molecular-weight chitosan/poly (vinyl alcohol) hydrogel prepared by gamma irradiation for localizing drug release. Bioresour Bioprocess. 2022; 9(1): 89. doi: 10.1186/s40643-022-00576-6



DOI: https://doi.org/10.22146/majkedgiind.106147

Article Metrics

Abstract views : 10 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics