Estimasi distribusi PDRB kawasan Kedungsepur secara spasial menggunakan Geographically Weighted Regression untuk mendukung pengembangan wilayah

https://doi.org/10.22146/mgi.95224

Adik Amin Nashrudien(1*), Retno Widodo Dwi Pramono(2)

(1) Magister Perencanaan Wilayah dan Kota, Fakultas Teknik, Universitas Gadjah Mada
(2) Magister Perencanaan Wilayah dan Kota, Fakultas Teknik, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Abstrak Salah satu tujuan utama perencanaan pembangunan adalah menghasilkan kebijakan dan program untuk mendorong pertumbuhan ekonomi agar kualitas hidup masyarakat yang tinggal dan bekerja meningkat. Perencanaan yang cermat diperlukan kerincian data aktivitas ekonomi yang cukup rinci paling tidak hingga pada tingkat komunitas yang dapat menggambarkan heterogenitas dari wilayah untuk analisis yang lebih detail dan lebih mendalam mengenai dinamika produksi dan transaksi yang merupakan jantung dari analisis ekonomi. Data Produk Domestik Regional Bruto (PDRB) yang ada saat ini hanya pada skala makro yang mengasumsikan nilainya merata di seluruh wilayah administrasi dan tidak menggambarkan heterogenitas hingga pada tingkat komunitas dan sebaran sentra-sentra kegiatan ekonomi. Penurunan skala (downscaling) PDRB secara spasial perlu dilakukan. Penelitian ini bertujuan menguji teknik downscaling untuk menghasilkan nilai estimasi dengan skala yang lebih kecil dari pada nilai aktual dengan menggunakan metode Geographically Weighted Regression (GWR) dari data nighttime light dan tutupan lahan yang ditambahkan data indeks vegatasi. Indeks vegetasi ditambahkan untuk meningkatkan akurasi dari hasil estimasi PDRB. Karena data tutupan lahan saja tidak cukup sensitif terhadap sebaran produktivitas lahan. Hasil penelitian menunjukkan bahwa GWR downscaling dengan menambahkan indeks vegatasi mempunyai nilai R2 yang mendekati nilai 1 yaitu sebesar 0.9980, 0.9992, dan 0.9991 untuk masing-masing estimasi PDRB sektor primer, sektor sekunder dan tersier, dan total PDRB. Nilai R2 yang mendekati nilai 1 menunjukkan bahwa metode yang dilakukan efektif untuk mengestimasi nilai PDRB downscaling.

Abstract One of the main goals of development planning is to produce policies and programs to stimulate economic growth so that the quality of life of the people living and working improves. Careful planning requires detailed economic activity data that are sufficiently detailed at least to the community level that can depict the heterogeneity of the region for a more detailed and in-depth analysis of the dynamics of production and transactions that are at the heart of economic analysis. The current Gross Domestic Product (GDP) data only on a macro scale assumes equal values across the administrative territory and does not describe heterogeneity up to the community level and the spread of economic activity centers. A spatial downscaling of GDP needs to be done. The study aims to test downscaling techniques to generate estimates of a scale smaller than the actual value using the Geographically Weighted Regression (GWR) method of nighttime light and land cover data added to the vegetation index data. Vegetation index is added to improve the accuracy of the GDP estimates because land coverage data alone is not sensitive enough to the land productivity spread. The results of the study showed that GWR downscaling by adding the vegetable index has R2 values that are close to the value of 1, i.e. 0.9980, 0.9992, and 0.9991 for each estimate of GDP of the primary, secondary and tertiary sectors, and total GDP. A value of R2 that is close to value 1 indicates that the method used is effective to estimate the GDP value of downscaling.

 

Submitted: 2024-03-31 Revisions:  2024-09-25 Accepted: 2024-09-11 Published: 2025-03-17



Keywords


PDRB; PDRB grid; geographically weighted regression (GWR); GWR downscaling; nighttime light



References

Achsin, S. N., Cangara, H., & Unde, A. A. (2015). Profil Desa dan Kelurahan sebagai Sumber Informasi: Studi Evaluasi tentang Penyediaan Informasi Potensi Desa dan Kelurahan di Sulawesi Selatan oleh Badan Pemberdayaan Masyarakat Pemerintahan Desa dan Kelurahan (BPMPDK) Provinsi Sulawesi Selatan. 4.

Ali, S., Ran, J., Luan, Y., Khorrami, B., Xiao, Y., & Tangdamrongsub, N. (2024). The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain. Science of The Total Environment, 908, 168239. https://doi.org/10.1016/j.scitotenv.2023.168239

Arifah, M. N. R., & Sari, V. (2023). Peramalan Produk Domestik Regional Bruto (PDRB) Atas Dasar Harga Konstan Menurut Lapangan Usaha Menggunakan Weighted Fuzzy Time Series. Prosiding University Research Colloquium, 1001–1010.

BPS. (2023). Produk Domestik Regional Bruto. https://www.bps.go.id/subject/52/produk-domestik-regional-bruto--lapangan-usaha-.html

BPS. (2017). Produk Domestik Regional Bruto Menurut Lapangan Usaha Kabupaten Magelang Tahun 2010 -2016.

Cameron, G. C., & Hoover, E. M. (1972). An Introduction to Regional Economics. The Economic Journal, 82(328), 1447. https://doi.org/10.2307/2231342

Cao, Z., Wu, Z., Kuang, Y., Huang, N., & Wang, M. (2016). Coupling an Intercalibration of Radiance-Calibrated Nighttime Light Images and Land Use/Cover Data for Modeling and Analyzing the Distribution of GDP in Guangdong, China. Sustainability, 8(2), 108. https://doi.org/10.3390/su8020108

Chen, Q., Hou, X., Zhang, X., & Ma, C. (2016). Improved GDP spatialization approach by combining land-use data and night-time light data: A case study in China’s continental coastal area. International Journal of Remote Sensing, 37(19), 4610–4622. https://doi.org/10.1080/01431161.2016.1217440

Chen, Y., Ge, Y., Chen, Y., Jin, Y., & An, R. (2018). Subpixel Land Cover Mapping Using Multiscale Spatial Dependence. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5097–5106. https://doi.org/10.1109/TGRS.2018.2808410

Chen, Y., Zhang, R., Ge, Y., Jin, Y., & Xia, Z. (2019). Downscaling Census Data for Gridded Population Mapping With Geographically Weighted Area-to-Point Regression Kriging. IEEE Access, 7, 1–1. https://doi.org/10.1109/ACCESS.2019.2945000

Chu, H.-J., Yang, C.-H., & Chou, C. C. (2019). Adaptive Non-Negative Geographically Weighted Regression for Population Density Estimation Based on Nighttime Light. ISPRS International Journal of Geo-Information, 8(1), Article 1. https://doi.org/10.3390/ijgi8010026

Donaldson, D., & Storeygard, A. (2016). The View from Above: Applications of Satellite Data in Economics. Journal of Economic Perspectives, 30(4), 171–198. https://doi.org/10.1257/jep.30.4.171

Elvidge, C. D. (1997). Mapping City Lights With Nighttime Data from the DMSP Operational Linescan System.

Gu, H., Chen, C., Lu, Y., Chu, Y., & Ma, Y. (2019). Construction of regional economic development model based on remote sensing data. IOP Conference Series: Earth and Environmental Science, 310(5), 052060. https://doi.org/10.1088/1755-1315/310/5/052060

Henderson, J. V., Squires, T., Storeygard, A., & Weil, D. (2018). The Global Distribution of Economic Activity: Nature, History, and the Role of Trade1. The Quarterly Journal of Economics, 133(1), 357–406. https://doi.org/10.1093/qje/qjx030

Huang, Z., Li, S., Gao, F., Wang, F., Lin, J., & Tan, Z. (2021). Evaluating the performance of LBSM data to estimate the gross domestic product of China at multiple scales: A comparison with NPP-VIIRS nighttime light data. Journal of Cleaner Production, 328, 129558. https://doi.org/10.1016/j.jclepro.2021.129558

Lu, B., Hu, Y., Yang, D., Liu, Y., Liao, L., Yin, Z., Xia, T., Dong, Z., Harris, P., Brunsdon, C., Comber, L., & Dong, G. (2023). GWmodelS: A software for geographically weighted models. SoftwareX, 21, 101291. https://doi.org/10.1016/j.softx.2022.101291

Ma, Z., Xue, Y., & Hu, G. (2021). Geographically Weighted Regression Analysis for Spatial Economics Data: A Bayesian Recourse. International Regional Science Review, 44(5), 582–604. https://doi.org/10.1177/0160017620959823

McCord, G. C., & Rodriguez-Heredia, M. (2022). Nightlights and Subnational Economic Activity: Estimating Departmental GDP in Paraguay. Remote Sensing, 14(5), 1150. https://doi.org/10.3390/rs14051150

Murakami, D., & Yamagata, Y. (2019). Estimation of Gridded Population and GDP Scenarios with Spatially Explicit Statistical Downscaling. Sustainability, 11(7), Article 7. https://doi.org/10.3390/su11072106

Nahavandi, A. (2013). Urban planners, economic development planners, and economic growth. http://hdl.handle.net/2152/24320

Pramono, R. W. D., & Suminar, R. E. (2019). Ekonomi Wilayah Untuk Perencanaan Tata Ruang. Deepublish.

Shi, K. (2020). Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. Journal of Cleaner Production.

Stimson, R. J., Stough, R. R., & Roberts, B. H. (2006). Regional Economic Development. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-34829-8

Sun, J., Di, L., Sun, Z., Wang, J., & Wu, Y. (2020). Estimation of GDP Using Deep Learning With NPP-VIIRS Imagery and Land Cover Data at the County Level in CONUS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1400–1415. https://doi.org/10.1109/JSTARS.2020.2983331

Sutton, P. C., & Costanza, R. (2002). Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecological Economics, 41(3), 509–527. https://doi.org/10.1016/S0921-8009(02)00097-6

USGS. (n.d.). What is remote sensing and what is it used for? https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used#:~:text=Remote%20sensing%20is%20the%20process,typically%20from%20satellite%20or%20aircraft).

Ustaoglu, E., Bovkır, R., & Aydınoglu, A. C. (2021). Spatial distribution of GDP based on integrated NPS-VIIRS nighttime light and MODIS EVI data: A case study of Turkey. Environment, Development and Sustainability, 23(7), 10309–10343. https://doi.org/10.1007/s10668-020-01058-5

Wang, S., Luo, Y., Li, X., Yang, K., Liu, Q., Luo, X., & Li, X. (2021). Downscaling Land Surface Temperature Based on Non-Linear Geographically Weighted Regressive Model over Urban Areas. Remote Sensing, 13(8), Article 8. https://doi.org/10.3390/rs13081580

Xu, W., Jin, J., Jin, X., Xiao, Y., Ren, J., Liu, J., Sun, R., & Zhou, Y. (2019). Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sensing, 11(17), Article 17. https://doi.org/10.3390/rs11172041

Xu, Z., Wang, Y., Sun, G., Chen, Y., Ma, Q., & Zhang, X. (2023). Generating Gridded Gross Domestic Product Data for China Using Geographically Weighted Ensemble Learning. ISPRS International Journal of Geo-Information, 12(3), 123. https://doi.org/10.3390/ijgi12030123

Yang, X. Y. (2017). How community-level social and economic developments have changed the patterns of substance use in a transition economy? Health & Place, 46, 91–100. https://doi.org/10.1016/j.healthplace.2017.05.009



DOI: https://doi.org/10.22146/mgi.95224

Article Metrics

Abstract views : 403

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Adik Amin Nashrudien

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 164/E/KPT/2021

Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025

ISSN  0215-1790 (print) ISSN 2540-945X  (online)

 

website statistics Statistik MGI