Karakteristik Elevasi Muka Air Laut di Selat Madura
Sofyana Ashari(1), Ashari Wicaksono(2*), Nike Ika Nuzula(3), Aries Dwi Siswanto(4)
(1) Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura, Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162.
(2) Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura, Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162. dan Laboratorium Oseanografi, Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura, Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162.
(3) Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura, Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162 dan SainsTek Pergaraman, Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura,Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162.
(4) Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura, Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162.dan Laboratorium Oseanografi, Program Studi Ilmu Kelautan, Universitas Trunojoyo Madura, Jl. Raya Telang, PO.Box.2 Kamal, Bangkalan-Jawa Timur, 69162.
(*) Corresponding Author
Abstract
Abstrak. Penelitian ini bertujuan untuk memahami karakteristik elevasi muka air laut di Selat Madura dengan memanfaatkan data altimetri dan divalidasi menggunakan data tide gauges. Data pengukuran diambil pada bulan Agustus 2022. Metode analisa menggunakan statistik dan FFT untuk memperoleh nilai komponen pasang surut dan elevasi air laut rata-rata. Hasil penelitian menunjukkan variasi nilai SSH di wilayah perairan Indonesia berkisar 0.4 - 0.8 m dan ± 0.6 m di Selat Madura, sedangkan hasil analisa tide gauge menunjukkan 1.2 – 1.4 m. Ada perbedaan signifikan dan ditunjukkan oleh nilai RMSE pada stasiun Surabaya 0.81; Kalianget 0.98; dan Probolinggo 0.94. Data tide gauges diolah lebih lanjut menggunakan metode admiralty sehingga diperoleh 15 komponen harmonik pasang surut, terdiri atas komponen diurnal [M1, K1, O1, P1, Q1, J1, OO1], semidiurnal [M2, S2, K2, N2, L2, 2N2], dan shallow water [M4 dan MS4], sehingga diketahui dominasi komponen diurnal (P1 dan K1) di stasiun pengukuran Surabaya dan Kalianget maupun komponen semidiurnal (N2 dan L2) di stasiun pengukuran Probolinggo. Hasil analisis FFT menunjukkan tipe pasang surut di Selat Madura tergolong tipe pasang surut campuran condong ganda/semidiurnal dengan nilai elevasi muka air laut tidak jauh berbeda pada tiga lokasi pengukuran. Nilai HHWL tertinggi di stasiun Probolinggo (3.3455 m), nilai LLWL terendah di stasiun Kalianget (0.5493 m). Nilai MSL masing-masing stasiun Surabaya, stasiun Kalianget, dan stasiun Probolinggo secara berturut-turut 1.4262 m; 1.2616 m; dan 1.8541 m. Perbedaan nilai MSL sesuai hasil analisa data altimetri dan tide gauge berkaitan dengan lokasi penelitian yang berada di wilayah pantai. Diharapkan bahwa penggunaan metode FFT dapat digunakan sebagai salah satu alternatif dalam mengetahui karakteristik pasang surut dari stasiun pengukuran yang tersebar di Selat Madura.
Abstract This study aims to understand the characteristics of sea level elevation in the Madura Strait by tide gauges and SSH data at three stations around the Madura Strait. Measurement was taken in August 2022. The analysis used statistics and FFT approach. The variation of SSH in Indonesian waters ranges from 0.4 - 0.8 m and ± 0.6 m in the Madura Strait, while the results of tide gauge analysis show 1.2 - 1.4 m. There is a significant difference and is shown by the RMSE value at Surabaya station 0.81; Kalianget 0.98; and Probolinggo 0.94. The tide gauge data were also further processed using the admiralty method to obtain 15 tidal harmonic components, consisting of diurnal component [M1, K1, O1, P1, Q1, J1, OO1], semidiurnal [M2, S2, K2, N2, L2, 2N2], and shallow water [M4, and MS4], so that the dominance of diurnal components (P1 and K1) at Surabaya and Kalianget measurement stations and semidiurnal components (N2 and L2) at Probolinggo measurement station is known. Meanwhile, the results of the FFT analysis show that the tidal type in the Madura Strait is classified as a mixed double-semidiurnal tidal type with sea level elevation values not much different at the three measurement locations. The highest HHWL value at Probolinggo station (3.3455 m), the lowest LLWL value at Kalianget station (0.5493 m). The MSL values of Surabaya station, Kalianget station, and Probolinggo station are 1.4262 m; 1.2616 m; and 1.8541 m, respectively. The difference in MSL values between altimetry and tide gauge data is caused by the location which is a coastal area, where SSH altimetry data is loss data in the area. It is expected thatt the use of the FFT method can be used as an alternative in knowing the tidal characteristics of measurement stations spread in the Madura Straits.
Submitted: 2024-02-28 Revisions: 2024-09-11 Accepted: 2024-09-25 Published: 2024-09-25
Keywords
Full Text:
PDFReferences
Archer, M. R. (2020). Increasing the Space – Time Resolution of Mapped Sea Surface Height From Altimetry Journal of Geophysical Research : Oceans. Journal of Geophysical Research: Oceans, 124, 1–18. https://doi.org/10.1029/2019JC015878
Ardiansyah, Y., Syah, A. F., & Hidayah, Z. (2017). Pemodelan Genangan Kenaikan Muka Air Laut (Sea Level Rise) Menggunakan Data Penginderaan Jauh Dan Sistem Informasi. Prosiding Seminar Nasional Kelautan Dan Perikanan, III, 203–214.
Armitage, T. W. ., Bacon, S., Ridout, A. L., Thomas, S. F., Aksenov, Y., & Wingham, D. J. (2016). Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. Journal of Geophysical Research: Oceans, 121, 4303–4322. https://doi.org/10.1002/2015JC011579.
Chaidir, F. A., & Tuharea, N. D. (2022). Analisa Perbandingan Data Pasang Surut Dengan Metode Koefisien Korelasi Dan Rmse Antara Data Ioc Sea Level Monitoring Dan Data Program NAOTIDE. SENSISTEK: Riset Sains dan Teknologi Kelautan.
Chelton, D. B., & Schlax, M. G. (2003). The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets. Journal of Atmospheric and Oceanic Technology, 20(9), 1276-1302.
Ducet, N., Le Traon, P. Y., & Reverdin, G. (2000). Global high‐resolution mapping of ocean circulation from TOPEX/Poseidon and ERS‐1 and‐2. Journal of Geophysical Research: Oceans, 105(C8), 19477-19498.
Evans, J. D. (1996). Straightforward Statistics For The Behavioral Sciences. Pacific Grove : Brooks/Cole Pub. F
Hamuna, B., Tanjung, R. H. R., Kalor, J. D., Dimara, L., Indrayani, E., Kelautan, I., & Cenderawasih, F. U. (2018). Studi karakteristik pasang surut perairan laut mimika, provinsi papua. Jurnal Acropora Ilmu Kelautan Dan Perikanan Papua, 1(1), 19–28.
Hanggarsari, P. N., Fitriawan, H., & Yuniati, Y. (2012). Simulasi Sistem Pengacakan Sinyal Suara Secara Realtime Berbasis Fast Fourier Transform ( FFT ). Jurnal Rekayasa Dan Teknologi Elektro, 6(3), 192–198.
Hasyim, B. (2014). Madura Waktu Terjadi El Nino Berdasarkan Data. Seminar Nasional Penginderaan Jauh, 769–781.
Ichsari, L. F., Handoyo, G., Setiyono, H., Ismanto, A., Marwoto, J., & Yusuf, M. (2020). Studi Komparasi Hasil Pengolahan Pasang Surut Dengan 3 Metode ( Admiralty , Least Square dan Fast Fourier Transform ) di Pelabuhan Malahayati, Banda Aceh. Indonesian Journal of Oceanography, 02, 3–6.
Khasanah, I. U., & Yenni, J. N. (2017). Kenaikan Muka Air Laut Perairan Sumatera Barat Berdasarkan Data Satelit Altimetri Jason-2. Geomatika, 23, 1–8.
Kusmanto, E., Hasanudin, M., & Setyawan, W. B. (2016). Amplifikasi pasang surut dan dampaknya terhadap Perairan Probolinggo. OLDI (Oseanologi Dan Limnologi Di Indonesia), 1(3), 69. https://doi.org/10.14203/oldi.2016.v1i3.72
Le Traon, P. Y., & Dibarboure, G. (2002). Velocity mapping capabilities of present and future altimeter missions: The role of high-frequency signals. Journal of Atmospheric and Oceanic Technology, 19(12), 2077–2088. https://doi.org/10.1175/1520-0426(2002)019<2077:vmcopa>2.0.co;2
Leeuwenburgh, O., & Stammer, D. (2002). Uncertainties in altimetry-based velocity estimates. Journal of Geophysical Research: Oceans, 107(10). https://doi.org/10.1029/2001jc000937
Madsen, K. S., Høyer, J. L., & Tscherning, C. C. (2007). Near-coastal satellite altimetry : Sea surface height variability in the North Sea – Baltic Sea area. Geophysical Research Letters, 34, 1–5. https://doi.org/10.1029/2007GL029965
Manikin, P. M. G., & Prabowo, I. A. (2021). Identifikasi Fluktuasi Muka Air Laut dengan Menggunakan Pendekatan Penginderaan Jauh Daerah Tegal, Jawa Tengah. Prosiding Nasional Rekayasa Teknologi Industri Dan Informasi XIII Tahun 2020 (ReTII), 2020(November), 451–457. http://journal.itny.ac.id/online/index.php/ReTII
Manikin, P. M., & Prabowo, I. A. (2021). Identifikasi Fluktuasi Muka Air Laut dengan Menggunakan. Prosiding Nasional Rekayasa Teknologi Industri Dan Informasi XIII TAHUN 2020 (ReTII), 2020(November), 451–457.
Musrifin. (2011). Analisis Pasang Surut Perairan Muara Sungai Mesjid Dumai. Jurnal Perikanan Dan Kelautan, 1(April), 48–55.
Nagura, M., & McPhaden, M. J. (2021). Interannual variability in sea surface height at southern midlatitudes of the Indian Ocean. Journal of Physical Oceanography, 51(5), 1595-1609.
Pasomba’, T., Jasin, M. I., & Jansen, T. (2019). Analisis pasang surut pada daerah pantai tobololo kelurahan tobololo kota ternate provinsi maluku utara. Jurnal Sipil Statik, 7(11), 1515–1526.
Peacock, N. R., & Laxon, S. W. (2004). Sea surface height determination in the Arctic Ocean from ERS altimetry. Journal of Geophysical Research, 109, 1–14. https://doi.org/10.1029/2001JC001026
Prayogo, L. M. (2021). Analisis Kenaikan Muka Air Laut Di Perairan Kalianget Kabupaten Sumenep Tahun 2000-2020. Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan, 2(1), 61–68. https://doi.org/10.21107/juvenil.v2i1.10035
Purba, N. P., Faizal, I., Damanik, F. S., Rachim, F. R., & Mulyani, P. G. (2020). Overview of Oceanic Eddies in Indonesia Seas Based on the Sea Surface Temperature and Sea Surface Height. World Scientific News, 147(July), 166–178.
Rachman, H. A., Gaol, J. L., & Syamsudin, F. (2019). Variasi Data Suhu Permukaan Laut, Tinggi Paras Laut, Klorofil-a, dan Upwelling di Perairan Selatan Jawa serta Korelasinya Dengan Data Lapangan. Journal of Marine and Aquatic Sciences, 5(2), 289. https://doi.org/10.24843/jmas.2019.v05.i02.p17
Rahmadeni, H. A., Setiyono, H., & Widada, S. (2017). Studi Karakteristik Pasang Surut Di Perairan Pulau Biawak Kabupaten Indramayu, Jawa Barat. Jurnal Oseanografi, 6, 666–671.
Richasari, D. S., & Handoko, E. Y. (2020). Analisis Pemodelan Arus Geostropik di Perairan Indonesia menggunakan Data Satelit Altimetri. Geoid, 16(1), 93. https://doi.org/10.12962/j24423998.v16i1.8564
Richman, J. G., Arbic, B. K., Shriver, J. F., Metzger, E. J., & Wallcraft, A. J. (2012). Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. Journal Of Geophysical Research, 117, 1–11. https://doi.org/10.1029/2012JC008364
Saputra, V. H., Rifai, A., & Kunarso. (2017). Variabilitas musiman pola arus di perairan surabaya jawa timur. Journal of Oceanography, 6, 439–448. https://ejournal3.undip.ac.id/index.php/joce/article/view/20203
Saraceno, M., Strub, P. T., & Kosro, P. M. (2008). Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges. Journal of Geophysical Research: Oceans, 113(11), 1–20. https://doi.org/10.1029/2008JC004756
Sasaki, H., & Klein, P. (2012). SSH Wavenumber Spectra in the North Pacific from a High-Resolution Realistic Simulation. Journal Of Physical Oceanography, 42(2005), 1233–1241. https://doi.org/10.1175/JPO-D-11-0180.1
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T., Menemenlis, D., Rourke, A. K. O., Richman, J. G., Shriver, J. F., Voet, G., Wallcraft, A. J., & Zamudio, L. (2017). Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Gephysical Research: Oceans, 122, 7803–7821. https://doi.org/10.1002/2017JC013009
Schweizer, D., Ried, V., Rau, G. C., Tuck, J. E., & Stoica, P. (2021). Comparing Methods and Defining Practical Requirements for Extracting Harmonic Tidal Components from Groundwater Level Measurements. Mathematical Geosciences, 53(6), 1147–1169. https://doi.org/10.1007/s11004-020-09915-9
Sipasulta, R. Y., St, A. S. M. L., & Sompie, S. R. U. A. (2014). Simulasi Sistem Pengacak Sinyal Dengan Metode FFT ( Fast Fourier Transform ). E-Journal Teknik Elektro Dan Komputer, 1–9.
Siswanto, A. D., & Nugraha, W. A. (2014). Studi Parameter Oseanografi Di Perairan Selat Madura Kabupaten Bangkalan. Jurnal Kelautan, 7(1), 45–49.
Stammer, D. (1997). Global Characteristics of Ocean Variability Estimated from Regional TOPEX / POSEIDON Altimeter Measurements. Journal Of Physical Oceanography, 27, 1743–1769.
Sugianto, D. N. (2009). Kajian Kondisi Hidrodinamika ( Pasang Surut , Arus , Dan Gelombang ) Di Perairan Grati Pasuruan , Jawa Timur. 14(2), 66–75.
Team, T. C. C. I. C. S. L. (2020). Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002-2018. Scientific Data, 7(1), 357. https://doi.org/10.1038/s41597-020-00694-w
Traon, P. Y. Le, Klein, P., & Hua, B. L. (2008). Do Altimeter Wavenumber Spectra Agree with the Interior or Surface Quasigeostrophic Theory ? JOURNAL OF PHYSICAL OCEANOGRAPHY, 38(2001), 1137–1142. https://doi.org/10.1175/2007JPO3806.1
Wicaksono, A., & Nuzula, N. I. (2021). Model Sla Dan Adt Di Perairan Indonesia Selama Badai Siklon Surigae. Jurnal Inovasi Sains Dan Teknologi Kelautan, 2(2), 40–44.
Xu, Y., & Fu, L.-L. (2012). The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height. JOURNAL OF PHYSICAL OCEANOGRAPHY, 42, 2229–2233. https://doi.org/10.1175/JPO-D-12-0106.1
Yuwono, Kurniawan, D., & Faisal, N. (2016). Analisis Komponen Harmonik Pengamatan Pasang Surut Menggunakan Alat Pengamat Pasang Surut Berbasis Sensor Ultrasonik (Studi Kasus : Desa Ujung Alang , Kampung Laut , Cilacap). GEOID, 12, 48–51.
Zuhaira, H., Handoyo, G., Anugroho, A., Suryo, D., & Yulina, S. (2020). Kajian Perbandingan Analisis Pasang Surut dengan Menggunakan Metode Least Square dan Fourier di Perairan Barat Sumatera. Indonesian Journal of Oceanography, 02.
DOI: https://doi.org/10.22146/mgi.94468
Article Metrics
Abstract views : 1786 | views : 294Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ashari Wicaksono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)
Statistik MGI