Kajian Perubahan Muka Airtanah di Cekungan Airtanah Yogyakarta-Sleman
Heru Hendrayana(1*), Azmin Nuha(2), Indra Agus Riyanto(3), Briyan Aprimanto(4)
(1) 1Departemen Teknik Geologi, Fakultas Teknik Universitas Gadjah Mada , Yogyakarta
(2) Groundwater Working Group (GWWG) Teknik Geologi, Fakultas Teknik Universitas Gadjah Mada, Yogyakarta.
(3) Magister Pengelolaan dan Perencanaan Pesisir dan Daerah Aliran Sungai, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta
(4) Groundwater Working Group (GWWG) Teknik Geologi, Fakultas Teknik Universitas Gadjah Mada, Yogyakarta.
(*) Corresponding Author
Abstract
Jumlah Penduduk dan industri yang terus meningkat di Cekungan Airtanah (CAT) Yogyakarta-Sleman. Perubahan muka airtanah dipengaruhi oleh faktor alami maupun faktor akibat aktivitas manusia. Tujuan dari penelitian ini adalah untuk mengetahui perubahan muka airtanah dan faktor yang paling berpengaruh terhadap perubahan muka airtanah. Metode yang digunakan berupa analisis spasial perubahan muka airtanah dan uji korelasi serta regresi. Data yang digunakan untuk analisis perubahan muka airtanah adalah sumur gali, sumur bor, curah hujan, penggunaan lahan, transmissivitas dan pemanfaatan airtanah tahun 2011 dan 2015. Sampel sumur gali yang digunakan sejumlah 800 dan sampel sumur bor yang digunakan sejumlah 16. Analisis spasial dilakukan dengan membandingkan dua peta muka airtanah tahun 2011 dan 2015 dengan menggunakan Arc GIS. Analisis statistik dilakukan dengan menggunakan Statistical Product and Service Solutions (SPSS). Metode statistik yang digunakan adalah uji korelasi pearson product moment dan regresi metode backward dan stepwise. Perubahan muka airtanah akuifer bagian atas tahun 2011 hingga 2015 memiliki perbedaan kedalaman antara -7 – 11 meter, sedangkan akuifer bagian bawah berkisar -2,2 – 1,4 meter. Parameter yang memiliki pengaruh terbesar hingga terkecil terhadap perubahan muka airtanah akuifer bagian atas adalah hujan (0,000), tutupan lahan (0,001), tingkat pemanfaatan airtanah (0,001) dan transmisivitas (0,411), sedangkan akuifer bagian bawah berupa tingkat pemanfaatan airtanah (0,000), transmisivitas (0,000), jumlah sumur bor (0,015), hujan (0,026), dan tutupan lahan (0,254). Faktor yang paling berpengaruh terhadap perubahan muka airtanah akuifer bagian atas adalah curah hujan dengan hasil regresi backward 0,133 , sedangkan pada akuifer bagian bawah adalah jumlah sumur bor pengguna airtanah dengan hasil regresi backward -0,012 .
The development of industries and populations in Yogyakarta-Sleman Groundwater Basin. There are several factors that can change the water table is natural factors and anthropogenic factors. The objectives of this research are to know whether the water tables changed and to analyze the most influential factor in the water table change. The method of the research consists of making spatial analysis the water table changes map and correlation analyses as well as regression analyses. The data used for analysis of groundwater level changes are dug wells, boreholes, rainfall, landuse, transmissivity and groundwater use in 2011 and 2015. This research used 800 samples dug wells and 16 boreholes. Spatial analysis compared groundwater level map in 2011 and 2015 usin ArcGIS. Satistical analysis was performed using Product and Service Solutions (SPSS). The statistical method used is the product moment correlation and backward and stepwise regression methods.The water table change on the upper aquifer in 2011 and 2015 has different depth about -7 – 14 meter whereas the lower aquifer in 2011 and 2015 is -2,2 - 1,4 meter. The largest and the smallest influence of the parameters toward the water table change on the upper aquifer respectively are rainfall parameter (0,000), land cover (0,001), the rate of groundwater usage (0,001) and transmissivity (0,411). In the other hand, the influences of the parameters on the lower aquifer are the rate of groundwater usage (0,000), transmissivity (0,000), the number of drilling well (0,015), rain fall (0,026), and land cover (0,254). The most influence factor to the water table change on the upper aquifer is rain fall with backward regression 0,133, whereas on the lower aquifer is the number of drilling well with backward regression -0,012..
Keywords
Full Text:
PDFReferences
Abiye, T., Masindi, K., Mengistu, H., & Demlie, M. (2018). Understanding the groundwater-level fluctuations for better management of groundwater resource: A case in the Johannesburg region. Groundwater for Sustainable Development, 7, 1–7. https://doi.org/10.1016/j.gsd.2018.02.004
Ahmed, K., Shahid, S., Demirel, M. C., Nawaz, N., & Khan, N. (2019). The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeology Journal, 27(7), 2485–2496. https://doi.org/10.1007/s10040-019-02023-x
Cahyadi, A., Riyanto, I. A., Fatchurohman, H., Santosa, S. H. M. B., & Endarto, R. (2020). Indeks Pemakaian Airtanah Di Kota Yogyakarta. Tunas Geografi, 9(1), 43. https://doi.org/10.24114/tgeo.v9i1.17630
Cai, Z., & Ofterdinger, U. (2016). Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland. Journal of Hydrology, 535, 71–84. https://doi.org/10.1016/j.jhydrol.2016.01.066
Cui, T., Raiber, M., Pagendam, D., Gilfedder, M., & Rassam, D. (2018). Evolution du niveau piézométrique et des relations nappe-rivière en réponse à la variabilité climatique : bassin de Clarence-Moreton (Australie). Hydrogeology Journal, 26(2), 593–614. https://doi.org/10.1007/s10040-017-1653-6
Dahlhaus, P. G., Evans, T. J., Nathan, E. L., Cox, J. W., & Simmons, C. T. (2010). Groundwater-level response to land-use change and the implications for salinity management in the West Moorabool River catchment, Victoria, Australia. Hydrogeology Journal, 18(7), 1611–1623. https://doi.org/10.1007/s10040-010-0616-y
Djaeni, A. (1985). Peta Hidrogeologi Indonesia Lembar Yogyakarta, Jawa.
Han, Z., Huang, S., Huang, Q., Bai, Q., Leng, G., Wang, H., Zhao, J., Wei, X., & Zheng, X. (2020). Effects of vegetation restoration on groundwater drought in the Loess Plateau, China. Journal of Hydrology, 591, 125566. https://doi.org/10.1016/j.jhydrol.2020.125566
Hendrayana, H., Riyanto, I. A., & Nuha, A. (2020). TINGKAT PEMANFAATAN AIRTANAH DI CEKUNGAN AIRTANAH baku bagi penduduk Kabupaten Sleman , Kota Yogyakarta , dan Kabupaten Bantul ( Gambar 1 ). CAT CAT Yogyakarta-Sleman memiliki material porus yang tersusun atas Formasi Yogyakarta pada bagian atas dan Forma. Geodika, 4(2), 127–137. https://doi.org/10.29408/geodika.v4i2.2643
Hendrayana, H., & Vicente, V. A. D. S. (2013). Cadangan Air Tanah Berdasarkan Geometri dan Konfigurasi Sistem Akuifer Cekungan Air Tanah Yogyakarta-Sleman. Seminar Nasional Kebumian Ke-6, 356–370.
Jiao, J. J., Leung, C. M., & Ding, G. (2008). Changes to the groundwater system, from 1888 to present, in a highly-urbanized coastal area in Hong Kong, China. Hydrogeology Journal, 16(8), 1527–1539. https://doi.org/10.1007/s10040-008-0332-z
Júnez-Ferreira, H. E., Herrera, G. S., Saucedo, E., & Pacheco-Guerrero, A. (2019). Influence of available data on the geostatistical-based design of optimal spatiotemporal groundwater-level-monitoring networks. Hydrogeology Journal, 27(4), 1207–1227. https://doi.org/10.1007/s10040-018-01921-w
Kalhor, K., & Emaminejad, N. (2019). Groundwater for Sustainable Development Sustainable development in cities : Studying the relationship between groundwater level and urbanization using remote sensing data. Groundwater for Sustainable Development, 9(March), 100243. https://doi.org/10.1016/j.gsd.2019.100243
Lee, S., Lee, K. K., & Yoon, H. (2019). Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors. Hydrogeology Journal, 27(2), 567–579. https://doi.org/10.1007/s10040-018-1866-3
Li, F., Wang, Y., Zhao, Y., & Qiao, J. (2018). Modelling the response of vegetation restoration to changes in groundwater level, based on ecologically suitable groundwater depth. Hydrogeology Journal, 26(7), 2189–2204. https://doi.org/10.1007/s10040-018-1813-3
Li, H., Lu, Y., Zheng, C., Zhang, X., Zhou, B., & Wu, J. (2020). Seasonal and inter-annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: A case study in yaoba oasis, Northwest China. Water (Switzerland), 12(1). https://doi.org/10.3390/w12010303
Li, X., Li, G., & Zhang, Y. (2014). Identifying major factors affecting groundwater change in the North China plain with grey relational analysis. Water (Switzerland), 6(6), 1581–1600. https://doi.org/10.3390/w6061581
Liu, C.-Y., Chia, Y., Chuang, P.-Y., Chiu, Y.-C., & Tseng, T.-L. (2018). Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakesIncidences des caractéristiques hydrogéologiques sur les changements du niveau des eaux souterraines induits par des séismesImpactos de las características hidro. Hydrogeology Journal, 26(2), 451–465. https://doi.org/10.1007/s10040-017-1684-z
Maggirwar, B. C., & Umrikar, B. N. (2011). Influence of various factors on the fluctuation of groundwater level in hard rock terrain and its importance in the assessment of groundwater. Journal of Geology and Mining Research, 3(11), 305–317. https://www.mendeley.com/research/influence-various-factors-fluctuation-groundwater-level-hard-rock-terrain-importance-assessment-grou/?utm_source=desktop&utm_medium=1.16.1&utm_campaign=open_catalog&userDocumentId=%257Bb59dc9f4-0eae-4b9a-b1f3-45911a62885b
Manny, L., Atmaja, R.R.S., and Putra, D. P. E. (2017). Groundwater Level Changes in Shallow Aquifer of Yogyakarta City, Indonesia: Distribution and Causes. Journal of Applied Geology, 1(2), 89. https://doi.org/10.22146/jag.27584
Mustafa, S. M. T., Abdollahi, K., Verbeiren, B., & Huysmans, M. (2017). Identification des facteurs influençant la sécheresse et le rabattement des eaux souterraines au nord-ouest du Bangladesh. Hydrogeology Journal, 25(5), 1357–1375. https://doi.org/10.1007/s10040-017-1547-7
Nath, B., Ni-Meister, W., & Choudhury, R. (2021). Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Groundwater for Sustainable Development, 12, 100500. https://doi.org/10.1016/j.gsd.2020.100500
Ohmer M., Liesch T., Geoppert N., G. N. (2017). On the Optimal Selection of Interpolation Methods for Groundwater Contouring: An Example of Propagation of Uncertainty Regarding Inter-Aquifer Exchange. Advance in Water Resources, 109, 121–132.
Oiro, S., Comte, J. C., Soulsby, C., MacDonald, A., & Mwakamba, C. (2020). Depletion of groundwater resources under rapid urbanisation in Africa: recent and future trends in the Nairobi Aquifer System, Kenya. Hydrogeology Journal, 28(8), 2635–2656. https://doi.org/10.1007/s10040-020-02236-5
Putra, D.P.E. and Indrawan, I. G. . (2014). ntegrated Assessment of Aquifer Susceptibility Due to Excessive Groundwater Abstraction; A Case Study of Yogyakarta-Sleman Groundwater Basin. Asean Engineering Journal, 3(2), 105–116.
Qi, P., Zhang, G., Xu, Y. J., Wang, L., Ding, C., & Cheng, C. (2018). Assessing the influence of precipitation on shallow groundwater table response using a combination of singular value decomposition and cross-wavelet approaches. Water (Switzerland), 10(5). https://doi.org/10.3390/w10050598
Rahardjo, W., Sukandarrumidi., Rosidi, H. M. D. (1995). Peta geologi lembar Yogyakarta, Jawa.
Selim, S. A., Hamdan, A. M., & Rady, A. A. (2014). Groundwater Rising as Environmental Problem, Causes and Solutions: Case Study from Aswan City, Upper Egypt. Open Journal of Geology, 04(07), 324–341. https://doi.org/10.4236/ojg.2014.47025
Tim Fakultas Teknik UGM. (2011). Pemetaan Zonasi Konservasi Air Tanah di Cekungan Air Tanah Yogyakarta-Sleman.
Wahyu, Wilopo., Putra, D.P.E., and Heru, H. (2021). Impacts of precipitation , land use change and urban wastewater on groundwater level fluctuation in the Yogyakarta-Sleman Groundwater Basin , Indonesia. Environ Monit Assess, 193(76), 1–14. https://doi.org/https://doi.org/10.1007/s10661-021-08863-z
Widiyanto, M. . (2013). Statistika Terapan. Elex Media Komputindo.
Wredaningrum, I. S. (2014). Analisis Perubahan Zona Agroklimat Daerah Istimewa Yogyakarta Ditinjau Dari Klasifikasi Iklim Menurut Oldeman. Jurnal Bumi Indonesia, 3(4), 1–10.
Yan, S. feng, Yu, S. en, Wu, Y. bai, Pan, D. feng, & Dong, J. gen. (2018). Understanding groundwater table using a statistical model. Water Science and Engineering, 11(1), 1–7. https://doi.org/10.1016/j.wse.2018.03.003
Yar, P. (2020). Urban development and its impact on the depletion of groundwater aquifers in Mardan City, Pakistan. Groundwater for Sustainable Development, 11, 100426. https://doi.org/10.1016/j.gsd.2020.100426
Article Metrics
Abstract views : 2945 | views : 1820Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Heru Hendrayana, azmin Nuha, Indra Agus Riyanto, Briyan Aprimanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)
Statistik MGI