An Integrated FTIR-TLC-PCA Approach for an Accurate Classification Model of Kratom Venation
Azka Muhammad Rusydan(1*), Mitsalina Fildzah Arifah(2), Endang Lukitaningsih(3), Nanang Fakhrudin(4)
(1) Universitas Jenderal Achmad Yani Yogyakarta
(2) Universitas Jenderal Achmad Yani Yogyakarta
(3) Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada
(4) Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Kratom (M. speciosa), has a long history of traditional use for various ailments as well as for recreational purposes due to its opioid and psychoactive effects. Nowadays kratom is easily accessible via online markets, with leaf powders commonly categorized by vein color, suggesting different effects despite minimal variations in alkaloid content. To improve the identification and characterization of kratom samples, fingerprinting methods using chemometric tools are increasingly applied in food and pharmaceutical analysis. This study explores a combination of Fourier Transform Infrared Spectroscopy (FTIR) and Thin-Layer Chromatography (TLC) densitometry data, analyzed with Principal Component Analysis (PCA), to develop a model for distinguishing kratom venation and other alkaloid-containing plants.
The TLC chromatogram revealed six consistent peaks (Rf values of 0.17, 0.27, 0.42, 0.73, 0.8, and 0.9), correlating with alkaloids found in kratom. Using PCA, we combined FTIR absorbance values at selected wavenumbers with TLC chromatogram data, resulting in four principal components (PC1, PC2, PC3, and PC4) that explained 84.1%, 9.7%, 2.7%, and 2.5% of the variance, respectively. The resulting score plot demonstrated distinct clustering of samples, which was then verified with cluster analysis. The resulting analysis indicated effective differentiation between kratom vein colors and plant species. The developed FTIR-TLC-PCA model offers a promising approach for sample classification, potentially aiding quality control and authenticity verification in pharmaceutical applications.
Keywords
Full Text:
PDFReferences
Alin, A. (2010). Minitab. Wiley Interdisciplinary Reviews: Computational Statistics, 2(6), 723–727. https://doi.org/10.1002/wics.113
Arifah, M. F., Hastuti, A. A. M. B., & Rohman, A. (2022). Utilization of UV-visible and FTIR spectroscopy coupled with chemometrics for differentiation of Indonesian tea: an exploratory study. Indonesian Journal of Pharmacy, 33(2). https://doi.org/10.22146/ijp.3795
Cinosi, E., Martinotti, G., Simonato, P., Singh, D., Demetrovics, Z., Roman-Urrestarazu, A., Bersani, F. S., Vicknasingam, B., Piazzon, G.,
Li, J.-H., Yu, W.-J., Kapitány-Fövény, M., Farkas, J., Di Giannantonio, M., & Corazza, O. (2015). Following “the Roots” of Kratom (Mitragyna speciosa): The Evolution of an Enhancer from a Traditional Use to Increase Work and Productivity in Southeast Asia to a Recreational Psychoactive Drug in Western Countries. BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/968786
Hassan, Z., Muzaimi, M., Navaratnam, V., Yusoff, N. H. M., Suhaimi, F. W., Vadivelu, R., Vicknasingam, B. K., Amato, D., von Hörsten, S., Ismail, N. I. W., Jayabalan, N., Hazim, A. I., Mansor, S. M., & Müller, C. P. (2013). From Kratom to mitragynine and its derivatives: Physiological and behavioural effects related to use, abuse, and addiction. Neuroscience & Biobehavioral Reviews, 37(2), 138–151. https://doi.org/10.1016/j.neubiorev.2012.11.012
Karabagias, I. K. (2020). Advances of spectrometric techniques in food analysis and food authentication implemented with chemometrics. Foods, 9(11). https://doi.org/10.3390/foods9111550
Kartini, & Azminah. (2012). Chromatographic fingerprinting and clustering of Plantago major L. from different areas in Indonesia. Asian Journal of Pharmaceutical and Clinical Research, 5, 191–195.
Miller, J. C., & Miller, J. N. (2005). Chemometrics for Analytical (5th ed.). Pearson Education Limited.
Mustafa, R. R., Sukor, R., Mohd Nor, S. M., & Saari, N. (2022). Methyl ester and aromatic ether modification of mitragynine for generation of mitragynine-specific polyclonal antibodies. Journal of Immunological Methods, 507, 113291. https://doi.org/10.1016/j.jim.2022.113291
Muttaqien, M. Z. (2024). Pandangan BNN terhadap Penggunaan Tanaman Kratom pada komunitas Dayak di Kalimantan Barat. Syntax Idea, 6(9), 4064–4069. https://doi.org/10.46799/syntax-idea.v6i9.4488
Nascimento, L. E. S., Arriola, N. D. A., da Silva, L. A. L., Faqueti, L. G., Sandjo, L. P., de Araújo, C. E. S., Biavatti, M. W., Barcelos-Oliveira, J. L., & de Mello Castanho Amboni, R. D. (2020). Phytochemical profile of different anatomical parts of jambu (Acmella oleracea (L.) R.K. Jansen): A comparison between hydroponic and conventional cultivation using PCA and cluster analysis. Food Chemistry, 332. https://doi.org/10.1016/j.foodchem.2020.127393
Olsen, E. O., O’Donnell, J., Mattson, C. L., Schier, J. G., & Wilson, N. (2019). Notes from the Field: Unintentional Drug Overdose Deaths with Kratom Detected — 27 States, July 2016–December 2017. MMWR. Morbidity and Mortality Weekly Report, 68(14), 326–327. https://doi.org/10.15585/mmwr.mm6814a2
Raffa, R. B., Beckett, J. R., Brahmbhatt, V. N., Ebinger, T. M., Fabian, C. A., Nixon, J. R., Orlando, S. T., Rana, C. A., Tejani, A. H., & Tomazic, R. J. (2013). Orally Active Opioid Compounds from a Non-Poppy Source. Journal of Medicinal Chemistry, 56(12), 4840–4848. https://doi.org/10.1021/jm400143z
Ramanathan, S., & McCurdy, C. R. (2020). Kratom (Mitragyna speciosa): worldwide issues. Current Opinion in Psychiatry, 33(4), 312–318. https://doi.org/10.1097/YCO.0000000000000621
Rech, M. A., Donahey, E., Cappiello Dziedzic, J. M., Oh, L., & Greenhalgh, E. (2015). New Drugs of Abuse. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(2), 189–197. https://doi.org/10.1002/phar.1522
Rusydan, A. M., Lukitaningsih, E., & Fakhrudin, N. (2021). Modeling and Optimization of Mitragyna speciosa Extraction using Box Behnken Design. Majalah Obat Tradisional, 26(3), 204. https://doi.org/10.22146/mot.68610
Sengnon, N., Vonghirundecha, P., Chaichan, W., Juengwatanatrakul, T., Onthong, J., Kitprasong, P., Sriwiriyajan, S., Chittrakarn, S., Limsuwanchote, S., & Wungsintaweekul, J. (2023). Seasonal and Geographic Variation in Alkaloid Content of Kratom (Mitragyna speciosa (Korth.) Havil.) from Thailand. Plants, 12(4), 949. https://doi.org/10.3390/plants12040949
Singh, D., Grundmann, O., Murugaiyah, V., Rahim, A. B. M., Chawarski, M., & Balasingam, V. (2020). Improved sexual functioning of long-term daily users of Mitragyna speciosa (Korth.). Journal of Herbal Medicine, 19, 100293. https://doi.org/10.1016/j.hermed.2019.100293
Singh, D., Narayanan, S., Müller, C. P., Swogger, M. T., Chear, N. J. Y., Dzulkapli, E. Bin, Yusoff, N. S. M., Ramachandram, D. S., León, F., McCurdy, C. R., & Vicknasingam, B. (2019). Motives for using Kratom (Mitragyna speciosa Korth.) among regular users in Malaysia. Journal of Ethnopharmacology, 233, 34–40. https://doi.org/10.1016/j.jep.2018.12.038
Takayama, H. (2004). Chemistry and Pharmacology of Analgesic Indole Alkaloids from the Rubiaceous Plant, Mitragyna speciosa. Chemical and Pharmaceutical Bulletin, 52(8), 916–928. https://doi.org/10.1248/cpb.52.916
Warner, M. L., Kaufman, N. C., & Grundmann, O. (2016). The pharmacology and toxicology of kratom: from traditional herb to drug of abuse. International Journal of Legal Medicine, 130(1), 127–138. https://doi.org/10.1007/s00414-015-1279-y
Worley, B., & Powers, R. (2016). PCA as a Practical Indicator of OPLS-DA Model Reliability. Current Metabolomics, 4(2), 97–103. https://doi.org/10.2174/2213235x04666160613122429
Ya, K., Tangamornsuksan, W., Scholfield, C. N., Methaneethorn, J., & Lohitnavy, M. (2019). Pharmacokinetics of mitragynine, a major analgesic alkaloid in kratom (Mitragyna speciosa): A systematic review. Asian Journal of Psychiatry, 43, 73–82. https://doi.org/10.1016/j.ajp.2019.05.016
Article Metrics
Refbacks
- There are currently no refbacks.
Faculty of Pharmacy
Universitas Gadjah Mada







