Bioerosion in the Late Eocene Discocyclina discus sowerbyi (Nuttall, 1926) in Bayat Area, Indonesia: Implications for Paleoecology

https://doi.org/10.22146/jtbb.93779

Diana Rahmawati(1*), Sugeng Sapto Surjono(2), Didit Hadi Barianto(3), Wartono Rahardjo(4)

(1) Doctoral student of Geological Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta-55281, Indonesia.; Geological Engineering, Faculty of Engineering, Universitas Mulawarman, Jl. Sambaliung No. 9, Samarinda, Kalimantan Timur-75242, Indonesia.
(2) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta-55281, Indonesia.
(3) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta-55281, Indonesia.
(4) 
(*) Corresponding Author

Abstract


This paper discusses about the bioerosion discovered in carbonate tests of Discocyclina discus sowerbyi (Nuttall, 1926), a large benthic foraminifera from the Priabonian (Late Eocene). The study material was sampled from the Gamping beds in the Wungkal-Gamping Formation in Bayat, Indonesia. We discovered four bioerosional trace fossils from three different ichnogenera demonstrate bioerosion from the surface test analysis. Oichnus simplex and Oichnus paraboloides are ichnogenus Oichnus diagnostic drilling holes that are often found on the surface. Caulostrepsis isp. exhibits the presence of uncomplicated U-shaped borings. The observed formation of drill holes can be mostly linked to the predatory behaviour of gastropods, while other trace fossils are predominantly associated with the burrowing activities of worms. The occurrence of well-preserved individual tests exhibiting no signs of bioerosion is infrequently observed in D. discus sowerbyi. In addition, bioerosion occurs more frequently in the microspheric generation than in the megalospheric generation. This research also demonstrates for the first time in Indonesia that parrotfish bite marks have developed on individual tests of the microspheric generation of D. discus sowerbyi. The taphonomic characteristics exhibited by the bioeroded and encrusted D. discus sowerbyi specimens can serve as reliable paleoecological indicators for sediment deposition occurring at an intermediate to high sedimentation regime. The occurrence of larger foraminifera with some bioerosional trace fossil highly proficient at documenting shallow marine sclerobionts.

 


Keywords


Bayat; Bioerosion; Discocyclina discus sowerbyi; Indonesia; Paleoecology; Late Eocene

Full Text:

PDF


References

Abdel-Fattah, Z.A., 2018. Bioerosion in the middle Eocene larger foraminifer Nummulites in the Fayum depression, Egypt. Proceedings of the Geologists’ Association, 129(6), pp.774–781. doi: 10.1016/j.pgeola.2018.08.003.

Beavington-Penney, S.J. & Racey, A., 2004. Ecology of extant nummulitids and other larger benthic foraminifera: Applications in palaeoenvironmental analysis. Earth-Science Reviews, 67(3–4), pp.219–265. doi: 10.1016/j.earscirev.2004.02.005.

Bothe, A.C.D., 1929. The Geology of The Hills Near Djiwo and The Southern Range. In Proceeding of the Fourth Pacific Science Congress. pp. 1–15.

Briguglio, A. & Hohenegger, J., 2011. How to react to shallow water hydrodynamics: The larger benthic foraminifera solution. Marine Micropaleontology, 81(1–2), pp.63–76. doi: 10.1016/j.marmicro.2011.07.004.

Bromley, R., 1981. Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geologica Hispanica, 16(1), pp.55–64.

Choiriyah, S.U. et al., 2006. Foraminifera Besar pada Satuan Batugamping Formasi Gamping-Wungkal, di Sekarbolo, Perbukitan Jiwo, Bayat-Klaten. Jurnal Ilmu Kebumian Teknologi Mineral, 19(1), pp.1–8.

Consorti, L. & Köroğlu, F., 2019. Maastrichtian-Paleocene larger Foraminifera biostratigraphy and facies of the Şahinkaya Member (NE Sakarya Zone, Turkey): Insights into the Eastern Pontides arc sedimentary cover. Journal of Asian Earth Sciences, 183(April). doi: 10.1016/j.jseaes.2019.103965.

D. Knaust & Bromley, R., 2012. Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, Elsevier. doi: 10.1017/S0016756813001118.

Donovan, S.K., 2017. A plea not to ignore ichnotaxonomy: recognizing and recording Oichnus Bromley. Swiss Journal of Palaeontology, 136(2), pp.369–372. doi: 10.1007/s13358-017-0134-9.

Donovan, S.K. & Jagt, J.W.M., 2020. Oichnus simplex Bromley infesting Hemipneustes striatoradiatus (Leske) (Echinoidea) from the Maastrichtian type area (Upper Cretaceous, The Netherlands). Ichnos:an International Journal of Plant and Animal, 27(1), pp.64–69. doi: 10.1080/10420940.2019.1584561.

Evans, S.D. et al., 2020. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proceedings of the National Academy of Sciences of the United States of America, 117(14), pp.7845–7850. doi: 10.1073/pnas.2001045117.

Frozza, C.F. et al., 2020. Bioerosion on Late Quaternary Planktonic Foraminifera Related to Paleoproductivity in the Western South Atlantic. Paleoceanography and Paleoclimatology, 35(8), pp.1–16. doi: 10.1029/2020PA003865.

Gibert, J.M. De, Martinell, J. & Domènech, R., 1998. Entobia Ichnofacies in Fossil Rocky Shores, Lower Pliocene , Northwestern Mediterranean. PALAIOS, 13(5), pp.476–487.

Hallock, P., 1985. Why are Larger Foraminifera Large? Paleobiology, 11(2), pp.195–208. https://www.jstor.org/stable/2400527.

Hallock, P. & Glenn, E.C., 1986. Larger Foraminifera : A Tool for Paleoenvironmental Analysis of Cenozoic Carbonate Depositional Facies. PALAIOS, 1(1), pp.55–64. https://www.jstor.org/stable/3514459%0A.

Hallock, P. & Reymond, C.E., 2022. Contributions of Trimorphic Life Cycles to Dispersal and Evolutionary Trends in Large Benthic Foraminifers. Journal of Earth Science, 33(6), pp.1425–1433. doi: 10.1007/s12583-022-1707-0.

Hanken, N.M., Uchman, A. & Jakobsen, S.L., 2012. Late Pleistocene-early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: An example from the Basissletta area. Boreas, 41(1), pp.42–55. doi: 10.1111/j.1502-3885.2011.00223.x.

Hohenegger, J., 2011. Large Foraminifera: Greenhouse Constructions and Gardeners in the Oceanic Microcosm, Kagoshima: The Kagoshima University Museum.

Hutchings, P., Peyrot-Clausade, M. & Osnorno, A., 2005. Influence of land runoff on rates and agents of bioerosion of coral substrates. Marine Pollution Bulletin, 51(1–4), pp.438–447. doi: 10.1016/j.marpolbul.2004.10.044.

Kong, D.Y., Lee, M.H. & Lee, S.J., 2015. Traces (ichnospecies Oichnus paraboloides) of predatory gastropods on bivalve shells from the Seogwipo Formation, Jejudo, Korea. Journal of Asia-Pacific Biodiversity, 8(4), pp.330–336. doi: 10.1016/j.japb.2015.10.013.

Lima, J.H.D., Minter, N.J. & Netto, R.G., 2017. Insights from functional morphology and neoichnology for determining tracemakers: a case study of the reconstruction of an ancient glacial arthropod-dominated fauna. Lethaia, 50(4), pp.576–590. doi: 10.1111/let.12214.

Lopes, R., 2011. Ichnology of fossil oysters (Bivalvia, Ostreidae) from the southern Brazilian coast. Gaea - Journal of Geoscience, 7(2), pp.94–103. doi: 10.4013/gaea.2011.72.02.

Rahmawati, D., Novian, M.I. & Rahardjo, W., 2012. Studi Biostratigrafi dan Analisis Mikrofasies Batugamping , Formasi Wungkal-Gamping, Jalur Pengukuran Padasan, Gunung Gajah, Bayat, Klaten, Jawa Tengah. 41st IAGI Annual Convention and Exhibition Yogyakarta. Yogyakarta: Ikatan Ahli Geologi Indonesia, pp. 3–6.

Santos, A., Mayoral, E. & Bromley, R.G., 2011. Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology, 54(3), pp.535–545. doi: 10.1111/j.1475-4983.2011.01040.x.

Sliter, W.V., 1971. Predation on benthic foraminifers. Journal of Foraminiferal Research, 1, pp.20–29.

Sumarso & Ismoyowati, T., 1975. Contribution to the Stratigraphy of the Jiwo Hills and their Southern Surroundings (Central Java). Proceedings Indonesian Petroleum Association, Fourth Annual Convention. Indonesian Petroleum Association.

Sumosusastro, S., 1956. A contribution to the Geology of the Eastern Djiwo hills and the Southern Range in Central Java. Dept. Geol. Faclt. Scie., University of Indonesia.

Svensson Nielsen, K.S., Nielsen, J.K. & Granville Bromley, R., 2003. Palaeoecological and ichnological significance of microborings in quaternary foraminifera. Palaeontologia Electronica, 6(1), pp.1–13.

Syed, R. & Sengupta, S., 2019. First record of parrotfish bite mark on larger foraminifera from the Middle Eocene of Kutch, Gujarat, India. Current Science, 116(3), pp.363–365.

Tribollet, A., Radtke, G. & Golubic, S., 2011. Bioerosion. In Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer, pp. 117–134. doi: 10.1007/978-1-4020-9212-1_25.

Vohník, M., 2021. Bioerosion and fungal colonization of the invasive foraminiferan Amphistegina lobifera in a Mediterranean seagrass meadow. Biogeosciences, 18(8), pp.2777–2790. doi: 10.5194/bg-18-2777-2021.

Wisshak, M. et al., 2015. In defence of an iconic ichnogenus - Oichnus Bromley, 1981. Annales Societatis Geologorum Poloniae, 85(3). doi: 10.14241/asgp.2015.029.

Wisshak, M. & Tapanila, L., 2008. Current Developments in Bioerosion Erlangen E., Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-540-77598-0.



DOI: https://doi.org/10.22146/jtbb.93779

Article Metrics

Abstract views : 131 | views : 208

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)