SiDREB2-based SNAP Marker-Assisted and Multi-Trait Selection in The Early Generation of Foxtail Millet (Setaria italica L. Beauv.)
Lidya Kristina Sari Butarbutar(1), Dwi Dana Syawaluddin(2), Willy Bayuardi Suwarno(3), Sintho Wahyuning Ardie(4*)
(1) Plant Breeding and Biotechnology Study Program, Faculty of Agriculture, IPB University, Jl. Meranti, Dramaga Campus, Bogor 16680, West Java, Indonesia
(2) Agronomy and Horticulture Study Program, Faculty of Agriculture, IPB University, Jl. Meranti, Dramaga Campus, Bogor 16680, West Java, Indonesia
(3) Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Jl. Meranti, Dramaga Campus, Bogor 16680, West Java, Indonesia
(4) Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Jl. Meranti, Dramaga Campus, Bogor 16680, West Java, Indonesia
(*) Corresponding Author
Abstract
Setaria italica L. or foxtail millet is known for its nutritious grains and adaptability to unfavorable environmental conditions. High productivity, early heading, medium stature, and tolerance to drought- or salinity stress are among the breeding objectives for foxtail millet. The objective of this study was to select F3 families of foxtail millet from the cross of Botok-10xICERI-6 by weighted selection index and assisted by SiDREB2-based SNAP marker. Genotyping of 178 F3 families using the SiDREB2-based SNAP marker resulted in 29 A/A genotypes, 121 A/G genotypes, and 28 G/G genotypes. Further evaluation was conducted on 48 F3 families consisting of 27 A/A genotypes and 21 A/G genotypes in an augmented randomized complete block design together with their parental genotypes (Botok-10xICERI-6) and three check genotypes (Mauliru-2, NTB-1, and Toraja). Plant height and heading time had high broad-sense heritability, whereas grain weight per plant had a moderate broad-sense heritability. Ten potential F3 families were selected based on a weighted selection index with 20% intensity, comprised of seven A/G genotypes and three A/A genotypes with a weighted selection index ranging from 0.84 to 3.76. The F3 family with pedigree numbers B10I6-15-136, B10I6-15-161, and B10I6-15-70 with A/A genotypes are considered putative transgressive segregants and could be continued to the next generation for further breeding process.
Keywords
Full Text:
PDFReferences
Al-khayri, J.M., Jain, S.M. & Johnson, D.V., 2019. Advances in plant breeding strategies: cereals, Salman Tower Building, N.Y.: Springer Charm.
Anuradha, N. & Patro, T.S.S.K., 2020. Estimates of variability, heritability and genetic advance in foxtail millet. J Pharmacogn Phytochem., 9(1), pp.1614-1616.
Ardie, S.W. et al., 2015. Early identification of salt tolerant foxtail millet (Setaria italica L. Beauv). Procedia Food Sci., 3, pp.303–312. doi: 10.1016/j.profoo.2015.01.033.
Arora, L. et al., 2023. Assessment of sensory and nutritional attributes of foxtail millet-based food product. Front Nutr., 1, pp.1-15. doi: 10.3389/fnut.2023.1146545
BMKG, 2023, ‘WMO ID: 96751’, in Stasiun Meteorologi Citeko, viewed 15 September 2023, from https://www.bmkg.go.id.
Doyle, J., 1990. Isolation of Plant DNA from fresh tissue. J Focus., 12, pp.13–15.
FAO, 2021, ‘Millet the Forgotten Crop is Making Comeback’ in Food and Agriculture Organization Statistics, viewed 1 July 2023, from https://www.fao.org/faostat/en/#data/QCL.
Han, F. et al., 2022. Transcriptome analysis reveals molecular mechanisms under salt stress in leaves of foxtail millet (Setaria italica L.). J Plants (Basel)., 11(14), pp.1864. doi: 10.3390/plants11141864
Hasan, N. et al., 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programs. J Genet Eng Biotechnol., 19, pp.128. doi: 10.1186/s43141-021-00231-1.
Jali, M.V. et al., 2012. Efficacy of value added foxtail millet therapeutic food in the management of diabetes and dyslipidemia in type 2 diabetic patients. Recent Res Sci Technol., 4(7), pp.3-4.
Knight, R., 1979. Quantitative genetic statistics and plant breeding. In Plant Breeding. Brisbane: Australian Vice-Chancellors Committee, pp.41-76.
Lata, C. et al., 2011. Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet (Setaria italica L.). J Exp Bot., 62(10), pp.3387-3401.
Mahmud, I. & Kramer, H.H., 1951. Segregation for yield, height, and maturity following a soybean cross. J Agronomy., 43(12), pp.605-609.
Moeinizade, S. et al., 2020. Multi-trait genomic selection methods for crop improvement. J Genet., 215(4), pp.931–945. doi: 10.1534/genetics.120.303305.
Moharil, M.P. et al., 2019. Foxtail millet (Setaria italica L.): potential of smaller millet for future breeding, Salman Tower Building, N.Y.: Springer Cham.
Nagaraja, T.E. et al., 2023 Artificial hybridization techniques in small millets—A review. Front Plant Sci., 14, pp.1112-1117. doi: 10.3389/fpls.2023.1112117.
Negrão, S., & Julkowska, M.M., 2020. Plant Phenotyping. In Encyclopedia of Life Sci. John Wiley & Sons, Ltd. doi: 10.1002/9780470015902.a0028894
Nugroho, R.B., 2020. Breeding Foxtail Millet (Setaria italica L. Beauv) Drought-tolerant and High Yield Using Traits SNP Markers Based on SiDREB2 Gene. Institut Pertanian Bogor.
Panchal, A., Singh, R.K. & Prasad, M., 2023. Recent advancements and future perspectives of foxtail millet genomics. Plant Growth Regul., 99, pp.11–23. doi: 10.1007/s10725-022-00858-1.
Parlindo, F., Khairani, H.W., & Ardie, S.W., 2022. Reducing the risk of seed-borne fungi development of foxtail millet [Setaria italica (L.) P. Beauv.] from Buru island through hot water treatment. J Fitopatologi., 18(6), pp.264-268. doi: 10.14692/jfi.18.6.
Ratnawati, S., Suwarno, W.B. & Ardie, S.W., 2024. The genetic variability of Indonesian local foxtail millet accession based on agro-morphological traits and early salinity tolerance evaluation utilizing SiDREB2-based SNAP marker. HAYATI J Biosci., 31(1), pp. 82-93. doi: 10.4308/hjb.31.1.82-93.
Saini, S. et al., 2021. Potential of underutilized millets as nutria-cereal: an overview. J Food Sci Technol., 58(12), pp.4465–4477. doi: 10.1007/s13197-021-04985-x
Schmidt, P. et al., 2019. Heritability in plant breeding on a genotype-difference basis. J Genetics., 8(4), pp.991-1008. doi: 10.1534/genetics.119.302134.
Singh, K. & Chandra, A., 2021. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. J Biologia., 76, pp.3043–3055. doi: 10.1007/s11756-021-00840-8.
Sintia, M., Ardie, S.W. & Suwarno, W.B., 2023. Genetic variability of F2 foxtail millet population derived from ICERI-5 and Botok-10 cross. J Biodiversitas., 24(6), pp.3559-3567. doi: 10.13057/biodiv/d240655.
Stansfield, W.D., 1991. Schaum’s outline of theory and problems of genetics, McGraw-Hill
UPOV, 2013. Foxtail Millet. Geneva: International Union for the Protection of New Varieties of Plants.
Widyawan, M.H. et al., 2018. Optimization of dot-blot SNP analysis for detection of drought or salinity stress associated marker in foxtail millet (Setaria italica L.). Sabrao J Breed Genet., 50 (1), pp.72-84.
Xiao, J. et al., 2021. Evaluation of drought tolerance in different genotypes of foxtail millet during the entire growth period. J Agro., 114(1), pp.340-355.
Xu, S., 2021. Methods of Multiple Trait Selection. In Quantitative Genetics. N.Y.: Springer Cham. doi: 10.1007/978-3-030-83940-6_17.
Younis, A. et al., 2020. Molecular markers improve abiotic stress tolerance in crops: A review. Plants (Basel)., 9(10), 1374. doi: 10.3390/plants9101374.
Zhang, L.Z. & Liu, R.H., 2015. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chem., 174. pp.495–501. doi: 10.1016/j.foodchem.2014.09.089.
DOI: https://doi.org/10.22146/jtbb.90407
Article Metrics
Abstract views : 1399 | views : 527Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)